A247043 Decimal expansion of gamma_2, a lattice sum constant, analog of Euler's constant for two-dimensional lattices.
6, 7, 0, 9, 0, 8, 3, 0, 7, 8, 8, 2, 4, 7, 8, 8, 0, 6, 0, 8, 5, 2, 7, 1, 5, 9, 9, 2, 5, 3, 8, 5, 3, 4, 2, 6, 8, 1, 6, 2, 6, 0, 9, 7, 1, 7, 9, 7, 6, 7, 2, 5, 3, 5, 0, 5, 8, 3, 6, 1, 7, 6, 7, 5, 0, 0, 0, 7, 0, 3, 2, 9, 9, 9, 4, 3, 6, 8, 4, 9, 8, 6, 2, 5, 8, 2, 4, 1, 4, 7, 5, 3, 0, 8, 5, 9, 6, 1, 9, 4, 5, 5, 4
Offset: 0
Examples
-0.670908307882478806085271599253853426816260971797672535...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 80.
Links
- Eric Weisstein's World of Mathematics, Lattice Sum.
Crossrefs
Cf. A247042.
Programs
-
Mathematica
delta2 = 2*Zeta[1/2]*(Zeta[1/2, 1/4] - Zeta[1/2, 3/4]); gamma2 = (1/4)*(delta2 + 2*Log[(Sqrt[2] + 1)/(Sqrt[2] - 1)] - 4*EulerGamma); RealDigits[gamma2, 10, 103] // First
-
PARI
(2*zeta(1/2)*(zetahurwitz(1/2, 1/4)-zetahurwitz(1/2, 3/4)) + 2*log((sqrt(2) + 1)/(sqrt(2) - 1)))/4 - Euler \\ Charles R Greathouse IV, Jan 31 2018
Formula
gamma_2 = (1/4)*(delta_2 + 2*log((sqrt(2) + 1)/(sqrt(2) - 1)) - 4*EulerGamma), where delta_2 is A247042.