A247046 Decimal expansion of delta_3, a constant associated with a certain 3-dimensional lattice sum.
2, 3, 1, 3, 6, 9, 8, 7, 0, 3, 8, 8, 2, 3, 2, 0, 6, 0, 3, 5, 8, 8, 8, 0, 9, 8, 7, 4, 0, 6, 1, 1, 5, 5, 0, 0, 8, 3, 5, 6, 3, 5, 7, 1, 3, 5, 5, 9, 5, 9, 6, 5, 9, 6, 2, 1, 7, 4, 5, 6, 1, 5, 7, 4, 9, 4, 7, 9, 4, 4, 9, 7, 6, 7, 8, 1, 2, 3, 8, 4, 7, 6, 3, 6, 9, 3, 6, 9, 0, 5, 9, 9, 0, 2, 3, 5, 8, 1, 9, 0
Offset: 1
Examples
-2.313698703882320603588809874061155008356357135595965962...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 79.
Links
- Eric Weisstein's World of Mathematics, Lattice Sum.
Programs
-
Mathematica
digits = 100; k0 = 10; dk = 10; Clear[s]; s[k_] := s[k] = 7*(Pi/6) - 19/2*Log[2] + 4*Sum[(3 + 3*(-1)^m + (-1)^(m + n))*Csch[Pi*Sqrt[m^2 + n^2]]/Sqrt[m^2 + n^2], {m, 1, k}, {n, 1, k}] // N[#, digits + 10] &; s[k0]; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits + 5][[1]] != RealDigits[s[k - dk], 10, digits + 5][[1]], Print["s(", k, ") = ", s[k]]; k = k + dk]; Pi0 = s[k]; delta3 = Pi0 + Pi/6; RealDigits[delta3, 10, digits] // First
Formula
Pi_0 + Pi/6, where Pi_0 is A185576.