cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247068 Primes whose base-2 expansion has no two consecutive 1's.

Original entry on oeis.org

2, 5, 17, 37, 41, 73, 137, 149, 257, 277, 293, 337, 521, 577, 593, 641, 661, 673, 677, 1033, 1061, 1093, 1097, 1109, 1153, 1193, 1289, 1297, 1301, 1321, 1361, 2053, 2069, 2081, 2089, 2113, 2129, 2213, 2309, 2341, 2377, 2389, 2593, 2633, 2689, 2693, 2729, 4129, 4133, 4177, 4229, 4241, 4261, 4357, 4373, 4421, 4649, 4673, 5153, 5189
Offset: 1

Views

Author

Jeffrey Shallit, Nov 16 2014

Keywords

Comments

Also: numbers appearing in both A000040 and A003714. Is it known to be infinite?

Crossrefs

Programs

  • Maple
    M:= 16: # to get all terms < 2^M
    B1:= {1}:
    B2:= {}:
    for n from 2 to M-1 do
       B3:= map(`+`,B1,2^n);
       B1:= B1 union B2;
       B2:= B3;
    od:
    select(isprime,{2} union B1 union B2);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list));   # Robert Israel, Nov 16 2014
  • Mathematica
    Select[Prime[Range[700]],SequenceCount[IntegerDigits[#,2],{1,1}]==0&] (* Harvey P. Dale, May 14 2022 *)
  • PARI
    my(t=bitand(n++,2*n));if(t==0,return(n));my(o=#binary(t)-1);((n>>o)+1)<Charles R Greathouse IV, Nov 16 2014
    
  • PARI
    forprime(p=2,5000,if(bitand(p,p>>1)==0,print1(p,", "))); \\ Joerg Arndt, Apr 25 2025
    
  • Python
    from itertools import islice
    from sympy import isprime
    def A247068_gen(): # generator of terms
        k = 0
        while True:
            if isprime(k:=(m:=~(k>>1))&(k-m)): yield k
    A247068_list = list(islice(A247068_gen(),30)) # Chai Wah Wu, Apr 25 2025
  • Sage
    def a_list(M):  # All terms < 2^M. After Robert Israel.
        A = [1]; B = [2]; s = 4
        for n in range(M-2):
            C = [a + s for a in A]
            A.extend(B)
            B = C
            s <<= 1
        A.extend(B)
        return list(filter(is_prime, A))
    a_list(13) # Peter Luschny, Nov 16 2014