A247068 Primes whose base-2 expansion has no two consecutive 1's.
2, 5, 17, 37, 41, 73, 137, 149, 257, 277, 293, 337, 521, 577, 593, 641, 661, 673, 677, 1033, 1061, 1093, 1097, 1109, 1153, 1193, 1289, 1297, 1301, 1321, 1361, 2053, 2069, 2081, 2089, 2113, 2129, 2213, 2309, 2341, 2377, 2389, 2593, 2633, 2689, 2693, 2729, 4129, 4133, 4177, 4229, 4241, 4261, 4357, 4373, 4421, 4649, 4673, 5153, 5189
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Estelle Basor, Brian Conrey, and Kent E. Morrison, Knots and ones, arXiv:1703.00990 [math.GT], 2017. See page 1.
Programs
-
Maple
M:= 16: # to get all terms < 2^M B1:= {1}: B2:= {}: for n from 2 to M-1 do B3:= map(`+`,B1,2^n); B1:= B1 union B2; B2:= B3; od: select(isprime,{2} union B1 union B2); # if using Maple 11 or earlier, uncomment the next line # sort(convert(%,list)); # Robert Israel, Nov 16 2014
-
Mathematica
Select[Prime[Range[700]],SequenceCount[IntegerDigits[#,2],{1,1}]==0&] (* Harvey P. Dale, May 14 2022 *)
-
PARI
my(t=bitand(n++,2*n));if(t==0,return(n));my(o=#binary(t)-1);((n>>o)+1)<
Charles R Greathouse IV, Nov 16 2014 -
PARI
forprime(p=2,5000,if(bitand(p,p>>1)==0,print1(p,", "))); \\ Joerg Arndt, Apr 25 2025
-
Python
from itertools import islice from sympy import isprime def A247068_gen(): # generator of terms k = 0 while True: if isprime(k:=(m:=~(k>>1))&(k-m)): yield k A247068_list = list(islice(A247068_gen(),30)) # Chai Wah Wu, Apr 25 2025
-
Sage
def a_list(M): # All terms < 2^M. After Robert Israel. A = [1]; B = [2]; s = 4 for n in range(M-2): C = [a + s for a in A] A.extend(B) B = C s <<= 1 A.extend(B) return list(filter(is_prime, A)) a_list(13) # Peter Luschny, Nov 16 2014
Comments