cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A247706 Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape P; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 0, 3, 0, 2, 16, 20, 20, 0, 135, 204, 140, 16, 6, 944, 1432, 1164, 296, 170, 0, 4814, 8796, 8452, 4068, 1708, 92, 20, 26435, 58656, 66994, 41648, 17494, 2700, 762, 0, 158761, 410000, 520728, 371456, 175810, 46648, 12876, 440, 62, 978044, 2783560, 3836254, 3107308, 1696312, 609772, 172724, 18220, 3160, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2014

Keywords

Comments

Sum_{k>0} k * T(n,k) = A247739(n).

Examples

			T(2,2) = 2:
.___.   .___.
|   |   |   |
| ._|   |_. |
|_| |   | |_|
|   |   |   |
|___|   |___| .
Triangle T(n,k) begins:
00 :      1;
01 :      1,      0;
02 :      3,      0,      2;
03 :     16,     20,     20,      0;
04 :    135,    204,    140,     16,      6;
05 :    944,   1432,   1164,    296,    170,     0;
06 :   4814,   8796,   8452,   4068,   1708,    92,    20;
07 :  26435,  58656,  66994,  41648,  17494,  2700,   762,   0;
08 : 158761, 410000, 520728, 371456, 175810, 46648, 12876, 440, 62;
		

Crossrefs

Row sums give A174249 or A233427(n,5).
Column k=0 gives A247770.
Even bisection of main diagonal gives A247076.
Cf. A247739.

A247121 Number of tilings of a 5 X 2n rectangle using 2n pentominoes of shapes P, U.

Original entry on oeis.org

1, 2, 12, 56, 248, 1184, 5472, 25376, 118208, 548864, 2550912, 11856896, 55098368, 256070144, 1190065152, 5530658816, 25703241728, 119453057024, 555145224192, 2579979739136, 11990182412288, 55723107221504, 258967268524032, 1203523043065856, 5593246378754048
Offset: 0

Views

Author

Alois P. Heinz, Nov 19 2014

Keywords

Examples

			a(2) = 12:
._______.      ._______.      ._______.      ._______.
|   |   |      |   ._| |      | ._|   |      | ._|   |
| ._| ._|      |___|   |      | |_____|      | |_____|
|_| |_| |      |   |___|      |___|   |      |___|_. |
|   |   |      | ._|   |      |   |_. |      |   ._| |
|___|___| (*4) |_|_____| (*2) |_____|_| (*4) |___|___| (*2) .
		

Crossrefs

Programs

  • Maple
    a:= n-> ceil((<<0|1|0>, <0|0|1>, <20|8|2>>^(n-1). <<2, 12, 56>>)[1, 1]):
    seq(a(n), n=0..30);

Formula

G.f.: (4*x^3-1)/(20*x^3+8*x^2+2*x-1).
Showing 1-2 of 2 results.