A247093
Triangle read by rows: T(m,n) = smallest odd prime p such that (m^p-n^p)/(m-n) is prime (0
3, 3, 3, 0, 0, 3, 3, 5, 13, 3, 3, 0, 0, 0, 5, 5, 3, 3, 5, 3, 3, 3, 0, 3, 0, 19, 0, 7, 0, 3, 0, 0, 3, 0, 3, 7, 19, 0, 3, 0, 0, 0, 31, 0, 3, 17, 5, 3, 3, 5, 3, 5, 7, 5, 3, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 5, 3, 7, 5, 5, 3, 7, 3, 3, 251, 3, 17, 3, 0, 5, 0, 151, 0, 0, 0, 59, 0, 5, 0, 3, 3, 5, 0, 1097, 0, 0, 3, 3, 0, 0, 7, 0, 17, 3
Offset: 1
Examples
Read by rows: m\n 1 2 3 4 5 6 7 8 9 10 11 2 3 3 3 3 4 0 0 3 5 3 5 13 3 6 3 0 0 0 5 7 5 3 3 5 3 3 8 3 0 3 0 19 0 7 9 0 3 0 0 3 0 3 7 10 19 0 3 0 0 0 31 0 3 11 17 5 3 3 5 3 5 7 5 3 12 3 0 0 0 3 0 3 0 0 0 3 etc.
Links
- Eric Chen, Table of n, a(n) for n = 1..663
- Eric Chen, Table of n, a(n) for n = 1..1000 status
Crossrefs
Cf. A000043 (2,1), A028491 (3,1), A057468 (3,2), A059801 (4,3), A004061 (5,1), A082182 (5,2), A121877 (5,3), A059802 (5,4), A004062 (6,1), A062572 (6,5), A004063 (7,1), A215487 (7,2), A128024 (7,3), A213073 (7,4), A128344 (7,5), A062573 (7,6), A128025 (8,3), A128345 (8,5), A062574 (8,7), A173718 (9,2), A128346 (9,5), A059803 (9,8), A004023 (10,1), A128026 (10,3), A062576 (10,9), A005808 (11,1), A210506 (11,2), A128027 (11,3), A216181 (11,4), A128347 (11,5), A062577 (11,10), A004064 (12,1), A128348 (12,5), A062578 (12,11).
Programs
-
Mathematica
t1[n_] := Floor[3/2 + Sqrt[2*n]] m[n_] := Floor[(-1 + Sqrt[8*n-7])/2] t2[n_] := n-m[n]*(m[n]+1)/2 b[n_] := GCD @@ Last /@ FactorInteger[n] is[m_, n_] := GCD[m, n] == 1 && GCD[b[m], b[n]] == 1 Do[k=2, If[is[t1[n], t2[n]], While[ !PrimeQ[t1[n]^Prime[k] - t2[n]^Prime[k]], k++]; Print[Prime[k]], Print[0]], {n, 1, 663}] (* Eric Chen, Jun 01 2015 *)
-
PARI
a052409(n) = my(k=ispower(n)); if(k, k, n>1); a(m, n) = {if (gcd(m,n) != 1, return (0)); if (gcd(a052409(m), a052409(n)) != 1, return (0)); forprime(p=3,, if (isprime((m^p-n^p)/(m-n)), return (p)););} tabl(nn) = {for (m=2, nn, for(n=1, m-1, print1(a(m,n), ", ");); print(););} \\ Michel Marcus, Nov 19 2014
-
PARI
t1(n)=floor(3/2+sqrt(2*n)) t2(n)=n-binomial(floor(1/2+sqrt(2*n)), 2) b(n)=my(k=ispower(n)); if(k, k, n>1) a(n)=if(gcd(t1(n),t2(n)) !=1 || gcd(b(t1(n)), b(t2(n))) !=1, 0, forprime(p=3,2^24,if(ispseudoprime((t1(n)^p-t2(n)^p)/(t1(n)-t2(n))), return(p)))) \\ Eric Chen, Jun 01 2015
Comments