A247121 Number of tilings of a 5 X 2n rectangle using 2n pentominoes of shapes P, U.
1, 2, 12, 56, 248, 1184, 5472, 25376, 118208, 548864, 2550912, 11856896, 55098368, 256070144, 1190065152, 5530658816, 25703241728, 119453057024, 555145224192, 2579979739136, 11990182412288, 55723107221504, 258967268524032, 1203523043065856, 5593246378754048
Offset: 0
Keywords
Examples
a(2) = 12: ._______. ._______. ._______. ._______. | | | | ._| | | ._| | | ._| | | ._| ._| |___| | | |_____| | |_____| |_| |_| | | |___| |___| | |___|_. | | | | | ._| | | |_. | | ._| | |___|___| (*4) |_|_____| (*2) |_____|_| (*4) |___|___| (*2) .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (2,8,20).
Programs
-
Maple
a:= n-> ceil((<<0|1|0>, <0|0|1>, <20|8|2>>^(n-1). <<2, 12, 56>>)[1, 1]): seq(a(n), n=0..30);
Formula
G.f.: (4*x^3-1)/(20*x^3+8*x^2+2*x-1).