cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247125 Number of tilings of a 5 X n rectangle using n pentominoes of shapes L, U, X.

Original entry on oeis.org

1, 0, 2, 1, 16, 10, 59, 60, 330, 397, 1520, 2218, 7875, 12820, 39250, 70045, 202168, 384866, 1038051, 2073580, 5385754, 11156701, 28015232, 59580154, 146333795, 317517636, 766142242, 1686735709, 4019319048, 8946988370, 21116854115, 47386013020, 111065223914
Offset: 0

Views

Author

Alois P. Heinz, Nov 19 2014

Keywords

Examples

			a(4) = 16:
._______.     ._______.     ._______.
| ._____|     | ._____|     | ._| ._|
|_| |_. |     |_| |_. |     | | | | |
|_. ._| |     |_. ._| |     | | | | |
| |_|___|     | |_| | |     |_| |_| |
|_______| (2) |_____|_| (4) |___|___| (4)
._______.     ._______.
| ._____|     | ._____|
|_| ._. |     |_|_. | |
| |_| |_|     | ._| | |
|_____| |     | |___| |
|_______| (2) |___|___| (4) .
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0|0>, <0|0|1|0|0|0>, <0|0|0|1|0|0>,
              <0|0|0|0|1|0>, <0|0|0|0|0|1>, <2|6|12|1|2|0>>^n)[6,6]:
    seq(a(n), n=0..40);

Formula

G.f.: -1/(2*x^6+6*x^5+12*x^4+x^3+2*x^2-1).

A247268 Number of tilings of a 5 X n rectangle using n pentominoes of shapes Y, U, X.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 0, 4, 5, 38, 22, 13, 90, 144, 457, 408, 386, 1267, 2230, 5912, 6481, 7098, 18896, 35433, 79634, 101232, 127501, 288304, 546652, 1113907, 1560356, 2148298, 4408181, 8335234, 15954116, 23827541, 35011426, 67591204, 126376945, 232719926
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2014

Keywords

Examples

			a(3) = 1, a(5) = 2:
._____.     ._________.   ._________.
| ._. |     |_. .___| |   | |___. ._|
|_| |_|     | |_| |_. |   | ._| |_| |
|_. ._|  ,  | |_. ._| |   | |_. ._| |
| |_| |     | ._|_| |_|   |_| |_|_. |
|_____|     |_|_______|   |_______|_|  .
		

Crossrefs

Programs

  • Maple
    gf:= -(x^40 +12*x^39 +36*x^38 -5*x^36 -2*x^35 +12*x^34 +54*x^33 +4*x^32 -21*x^31 -23*x^30 +4*x^29 +20*x^28 +4*x^27 -4*x^25 -7*x^24 -6*x^23 -3*x^22 +33*x^21 -7*x^20 -10*x^19 -12*x^18 -9*x^17 +12*x^16 +16*x^15 +3*x^14 -2*x^13 -2*x^12 -2*x^11 -3*x^10 +5*x^9 -2*x^6 -7*x^5 -x^4 +1) /
    (x^43 +12*x^42 +36*x^41 -3*x^40 -29*x^39 -58*x^38 +12*x^37 +67*x^36 +4*x^35 -123*x^34 -99*x^33 +8*x^32 +23*x^31 -145*x^30 -52*x^29 -52*x^28 -35*x^27 -112*x^26 -99*x^25 -28*x^24 -7*x^23 -15*x^22 -99*x^21 -42*x^20 +22*x^19 +36*x^18 +26*x^17 -4*x^16 +6*x^15 +31*x^14 +5*x^13 +11*x^12 +14*x^11 +23*x^10 -5*x^9 -7*x^8 -x^7 +2*x^6 +9*x^5 +x^4 +x^3 -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..60);

Formula

G.f.: see Maple program.

A264812 Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, I, X.

Original entry on oeis.org

1, 1, 3, 5, 13, 52, 123, 366, 909, 2444, 7108, 19157, 53957, 146826, 400704, 1115852, 3059907, 8475420, 23369304, 64225984, 177572352, 488839323, 1349102071, 3722419367, 10255126169, 28303059509, 78013005366, 215160477217, 593488173404, 1636220978049
Offset: 0

Views

Author

Alois P. Heinz, Nov 25 2015

Keywords

Examples

			a(4) = 13:
._______.      ._______.      ._______.      ._______.
| | | | |      |   |   |      |   | | |      |   ._| |
| | | | |      | ._| ._|      | ._| | |      |___|   |
| | | | |      |_| |_| |      |_| | | |      |   |___|
| | | | | (1)  |   |   | (4)  |   | | | (6)  | ._|   | (2)
|_|_|_|_|      |___|___|      |_ _|_|_|      |_|_____|    .
a(5) = 52:
._________.
|   |_.   |
| ._| |___|
|_|_   _| |
|   |_|   | (2)  ...
|_____|___|          .
		

Crossrefs

A278330 Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, U, X.

Original entry on oeis.org

1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984, 7019, 11148, 35686, 62181, 182776, 339350, 942507, 1841208, 4887096, 9921685, 25442304, 53190380, 132928715, 284198328, 696276202, 1514363221, 3654567764, 8053235650, 19212546163, 42762014028, 101125071372
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2016

Keywords

Examples

			a(2) = 2,          a(3) = 1:
.___.   .___.      ._____.
|   |   |   |      | ._. |
| ._|   |_. |      |_| |_|
|_| |   | |_|      |_   _|
|   |   |   |      | |_| |
|___|   |___|      |_____| .
		

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(12, (i, j)-> `if`(i+1=j, 1, `if`(i=12,
        [-8, -16, 0, -6, -4, -8, 21, 4, 8, 2, 2, 0][j], 0)))^n.
        <<1, 0, 2, 1, 12, 10, 59, 52, 276, 349, 1404, 1984>>)[1, 1]:
    seq(a(n), n=0..35);

Formula

G.f.: -(4*x^6+x^3-1) / (8*x^12 +16*x^11 +6*x^9 +4*x^8 +8*x^7 -21*x^6 -4*x^5 -8*x^4 -2*x^3 -2*x^2+1).
a(n) mod 2 = A079978(n).
Showing 1-4 of 4 results.