A247125 Number of tilings of a 5 X n rectangle using n pentominoes of shapes L, U, X.
1, 0, 2, 1, 16, 10, 59, 60, 330, 397, 1520, 2218, 7875, 12820, 39250, 70045, 202168, 384866, 1038051, 2073580, 5385754, 11156701, 28015232, 59580154, 146333795, 317517636, 766142242, 1686735709, 4019319048, 8946988370, 21116854115, 47386013020, 111065223914
Offset: 0
Keywords
Examples
a(4) = 16: ._______. ._______. ._______. | ._____| | ._____| | ._| ._| |_| |_. | |_| |_. | | | | | | |_. ._| | |_. ._| | | | | | | | |_|___| | |_| | | |_| |_| | |_______| (2) |_____|_| (4) |___|___| (4) ._______. ._______. | ._____| | ._____| |_| ._. | |_|_. | | | |_| |_| | ._| | | |_____| | | |___| | |_______| (2) |___|___| (4) .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (0,2,1,12,6,2).
Programs
-
Maple
a:= n-> (<<0|1|0|0|0|0>, <0|0|1|0|0|0>, <0|0|0|1|0|0>, <0|0|0|0|1|0>, <0|0|0|0|0|1>, <2|6|12|1|2|0>>^n)[6,6]: seq(a(n), n=0..40);
Formula
G.f.: -1/(2*x^6+6*x^5+12*x^4+x^3+2*x^2-1).