A247126 Number of tilings of a 5 X n rectangle using n pentominoes of shapes F, U, X, N.
1, 0, 0, 1, 2, 0, 1, 4, 4, 1, 14, 12, 17, 32, 64, 81, 138, 272, 489, 764, 1548, 2809, 5062, 9420, 17721, 32712, 60992, 114105, 213890, 398784, 747745, 1401476, 2624004, 4916369, 9218118, 17274340, 32378521, 60694768, 113785984, 213293721, 399856922, 749628208
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
Programs
-
Maple
gf:= -(x+1) *(4*x^19 -4*x^18 +8*x^17 -4*x^16 +12*x^15 -12*x^14 +9*x^13 -5*x^12 -2*x^10 +5*x^9 -6*x^8 +10*x^7 -10*x^6 +8*x^5 -7*x^4 +4*x^3 -3*x^2 +3*x-1) / (4*x^23 +8*x^22 +12*x^21 +32*x^20 +8*x^19 +6*x^18 -15*x^17 -22*x^16 -9*x^15 -9*x^14 +13*x^13 +4*x^12 +22*x^11 -15*x^10 +x^9 -9*x^8 -x^7 +3*x^6 +3*x^5 +3*x^4 -2*x^3 -2*x+1): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..50);
Formula
G.f.: see Maple program.