A247128 Positive numbers that are congruent to {0,5,9,13,17} mod 22.
5, 9, 13, 17, 22, 27, 31, 35, 39, 44, 49, 53, 57, 61, 66, 71, 75, 79, 83, 88, 93, 97, 101, 105, 110, 115, 119, 123, 127, 132, 137, 141, 145, 149, 154, 159, 163, 167, 171, 176, 181, 185, 189, 193, 198, 203, 207, 211
Offset: 1
Examples
Sequence consists of the integer values of sqrt(4*k - ceiling(k/3) + 3 + k mod 2), for k>0; e.g., for k = 5, sqrt( 20 - 2 + 3 + 1) = sqrt(22) = 4.6904; for k = 6, sqrt( 24 - 2 + 3 + 0) = sqrt(25) = 5; for k = 21, sqrt( 84 - 7 + 3 + 1) = sqrt(81) = 9; for k = 44, sqrt(176 - 15 + 3 + 0) = sqrt(164) = 12.8062; for k = 45, sqrt(180 - 15 + 3 + 1) = sqrt(169) = 13. Of these, the only integer values are 5, 9, 13, so they are in the sequence.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..100000
- Eric Weisstein's World of Mathematics, 196 Algorithm.
- Eric Weisstein's World of Mathematics, Lychrel Number
- Eric Weisstein's World of Mathematics, Palindromic Number Conjecture
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Programs
-
Mathematica
a247128[n_Integer] := Select[Range[n], MemberQ[{0, 5, 9, 13, 17}, Mod[#, 22]] &]; a247128[211] (* Michael De Vlieger, Nov 23 2014 *)
-
PARI
isok(n) = m = n % 22; (m==0) || (m==5) || (m==9) || (m==13) || (m==17); select(x->isok(x), vector(200, i, i)) \\ Michel Marcus, Nov 28 2014
-
Python
from math import * for n in range(0,100001): if (sqrt(4*n-ceil(n/3)+3+n%2))%1==0:print(int(sqrt(4*n-ceil(n/3)+3+n%2)),end=",")
-
Python
A247128_list = [n for n in range(1,10**5) if (n % 22) in {0,5,9,13,17}] # Chai Wah Wu, Dec 31 2014
-
Python
A247128_list, l = [], [5,9,13,17,22] for _ in range(10**5): A247128_list.extend(l) l = [x+22 for x in l] # Chai Wah Wu, Jan 01 2015
Formula
a(n) = a(n-1) + a(n-5) - a(n-6). - Colin Barker, Nov 20 2014
G.f.: x*(5*x^4+4*x^3+4*x^2+4*x+5) / ((x-1)^2*(x^4+x^3+x^2+x+1)). - Colin Barker, Nov 20 2014
Proof that a(n) = a(n-1) + a(n-5) - a(n-6): the sequence a(n) is a concatenation of the sequences [5+22*i, 9+22*i, 13+22*i, 17+22*i, 22+22*i] for i = 0,1,2,..., so it is clear that a(n-1) = a(n-6) + 22 and a(n) = a(n-5) + 22. - Chai Wah Wu, Jan 01 2015
Comments