A247131 Numbers n > 0 such that a record number of composite numbers k have n as the sum of the nontrivial divisors of k.
1, 2, 5, 20, 30, 48, 72, 90, 114, 120, 168, 210, 300, 330, 360, 390, 420, 510, 630, 720, 780, 840, 1050, 1260, 1470, 1560, 1680, 1890, 2100, 2310, 2520, 2730, 3150, 3360, 3570, 3990, 4200, 4410, 4620, 5250, 5460, 6090, 6510, 6720, 6930, 7770, 7980, 8190, 9030, 9240, 10710, 10920, 11550, 13020, 13650, 13860, 15540
Offset: 1
Keywords
Examples
For 1, there are no numbers. For 2, there is 1 number: 4. For 5, there are 2 numbers: 6 and 25. For 20, there are 3 numbers: 18, 51, 91.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..139
Crossrefs
Programs
-
Mathematica
ch[1] = 0; ch[n_] := DivisorSigma[1, n] - n - 1; m = 300; v = Table[0, {m}]; Do[c = ch[k]; If[1 <= c <= m, v[[c]]++], {k, 1, m^2}]; s = {}; vm = -1; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[s, k]], {k, 1, m}]; s (* Amiram Eldar, Nov 05 2019 *)
Formula
Obviously a(n) = A238895(n)-1.
Comments