cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247133 Expansion of f(-x, -x^11) in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 10 2015

Keywords

Examples

			G.f. = 1 - x - x^11 + x^14 + x^34 - x^39 - x^69 + x^76 + x^116 - x^125 + ...
G.f. = q^25 - q^49 - q^289 + q^361 + q^841 - q^961 - q^1681 + q^1849 + ...
		

Crossrefs

Cf. A210964.

Programs

  • PARI
    {a(n) = my(m = 24*n + 25); if( issquare(m, &m) && (m%12==5 || m%12==7), (-1)^((m+6) \ 12))};

Formula

Euler transform of period 12 sequence [ -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, ...].
G.f.: Product_{k>0} (1 - x^(12*k)) * (1 - x^(12*k - 1)) * (1 - x^(12*k - 11)).
Convolution inverse of A210964.