A247165 Numbers m such that m^2 + 1 divides 2^m - 1.
0, 16, 256, 8208, 65536, 649800, 1382400, 4294967296
Offset: 1
Examples
0 is in this sequence because 0^2 + 1 = 1 divides 2^0 - 1 = 1.
Crossrefs
Programs
-
Magma
[n: n in [1..100000] | Denominator((2^n-1)/(n^2+1)) eq 1];
-
Maple
select(n -> (2 &^ n - 1) mod (n^2 + 1) = 0, [$1..10^6]); # Robert Israel, Dec 02 2014
-
Mathematica
a247165[n_Integer] := Select[Range[0, n], Divisible[2^# - 1, #^2 + 1] &]; a247165[1500000] (* Michael De Vlieger, Nov 30 2014 *)
-
PARI
for(n=0,10^9,if(Mod(2,n^2+1)^n==+1,print1(n,", "))); \\ Joerg Arndt, Nov 30 2014
-
Python
A247165_list = [n for n in range(10**6) if n == 0 or pow(2,n,n*n+1) == 1] # Chai Wah Wu, Dec 04 2014
Extensions
a(8) from Chai Wah Wu, Dec 04 2014
Edited by Jon E. Schoenfield, Dec 06 2014
Comments