A247184 a(0) = 0. a(n) is the number of distinct sums of two elements in [a(0), ... a(n-1)] chosen without replacement.
0, 0, 1, 2, 4, 7, 11, 15, 20, 26, 32, 40, 48, 57, 65, 73, 81, 90, 98, 106, 114, 123, 132, 147, 157, 170, 190, 202, 223, 236, 251, 270, 291, 314, 338, 361, 380, 398, 421, 443, 471, 495, 520, 544, 567, 592, 616, 639, 663, 692, 720, 749, 781, 819, 852, 885, 913, 948, 987, 1023, 1055, 1088
Offset: 0
Keywords
Examples
a(1) gives the number of distinct sums of two elements of [0]. There aren't two elements so a(1) = 0. a(2) gives the number of distinct sums of two elements of [0,0]. There is only 1 sum, 0, so a(2) = 1. a(3) gives the number of distinct sums of two elements of [0,0,1]. There are 2 distinct possible sums 0 and 1, so a(3) = 2. a(4) gives the number of distinct sums of two elements of [0,0,1,2]. There are 4 distinct possible sums {0, 1, 2, 3}, so a(4) = 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
s:= proc(n) option remember; `if`(n=0, {}, {s(n-1)[], seq(a(i)+a(n), i=0..n-1)}) end: a:= proc(n) option remember; `if`(n=0, 0, nops(s(n-1))) end: seq(a(n), n=0..50); # Alois P. Heinz, Nov 16 2020
-
Mathematica
s[n_] := s[n] = If[n == 0, {}, Union@Join[s[n-1], Table[a[i] + a[n], {i, 0, n-1}]]]; a[n_] := a[n] = If[n == 0, 0, Length[s[n-1]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 16 2021, after Alois P. Heinz *)
-
PARI
v=[0];n=1;while(n<75,w=[];for(i=1,#v,for(j=i+1,#v,w=concat(w,v[i]+v[j])));v=concat(v,#vecsort(w,,8));n++);v
Comments