A247231 Triangular array read by rows: T(n,k) is the number of ways to partition an n-set into exactly k blocks and then partially order the blocks, n>=1, 1<=k<=n.
1, 1, 3, 1, 9, 19, 1, 21, 114, 219, 1, 45, 475, 2190, 4231, 1, 93, 1710, 14235, 63465, 130023, 1, 189, 5719, 76650, 592340, 2730483, 6129859, 1, 381, 18354, 372519, 4442550, 34586118, 171636052, 431723379, 1, 765, 57475, 1701630, 29409681, 344040858, 2831994858, 15542041644, 44511042511
Offset: 1
Examples
Triangle T(n,k) begins: 1; 1, 3; 1, 9, 19; 1, 21, 114, 219; 1, 45, 475, 2190, 4231; 1, 93, 1710, 14235, 63465, 130023; 1, 189, 5719, 76650, 592340, 2730483, 6129859; ...
Links
- Alois P. Heinz, Rows n = 1..18
Crossrefs
Programs
-
Mathematica
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]]; lg = Length[A001035]; A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}]; Rest[CoefficientList[#, y]]& /@ (CoefficientList[A[y*(Exp[x] - 1)] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
Formula
E.g.f.: A(y*(exp(x) - 1)) where A(x) is the e.g.f. for A001035.
Comments