A247236 Triangle read by rows: T(n,k) appears in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x+k)^k.
1, -1, 2, -1, -10, 3, -1, 26, -33, 4, -1, -54, 207, -76, 5, -1, 96, -993, 824, -145, 6, -1, -156, 4047, -6736, 2375, -246, 7, -1, 236, -14769, 46184, -28985, 5634, -385, 8, -1, -340, 49743, -280408, 293575, -95166, 11711, -568, 9, -1, 470, -157617, 1556672, -2609465, 1322334, -260449, 22112, -801, 10
Offset: 0
Examples
From _Wolfdieter Lang_, Jan 12 2015: (Start) The triangle T(n,k) starts: n\k 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: -1 2 2: -1 -10 3 3: -1 26 -33 4 4: -1 -54 207 -76 5 5: -1 96 -993 824 -145 6 6: -1 -156 4047 -6736 2375 -246 7 7: -1 236 -14769 46184 -28985 5634 -385 8 8: -1 -340 49743 -280408 293575 -95166 11711 -568 9 9: -1 470 -157617 1556672 -2609465 1322334 -260449 22112 -801 10 ... Reformatted. --------------------------------------------------------------------- n=3: 1 + 2*x + 3*x^2 + 4*x^3 = -1*(x+0)^0 + 26*(x+1)^1 - 33*(x+2)^2 + 4*(x+3)^3. (End)
Programs
-
PARI
T(n,k)=(k+1)-sum(i=k+1,n,i^(i-k)*binomial(i,k)*T(n,i)) for(n=0,10,for(k=0,n,print1(T(n,k),", ")))
Formula
Extensions
Edited. - Wolfdieter Lang, Jan 12 2015
Comments