cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247239 Array a(n,m) = ((n+2)/2)^m*Sum_{k=1..n+1} 1/sin(k*Pi/(n+2))^(2m), n>=0, k>=0, read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 10, 8, 1, 5, 20, 36, 16, 1, 6, 35, 120, 136, 32, 1, 7, 56, 329, 800, 528, 64, 1, 8, 84, 784, 3611, 5600, 2080, 128, 1, 9, 120, 1680, 13328, 42065, 40000, 8256, 256, 1, 10, 165, 3312, 42048, 241472, 499955, 288000, 32896, 512, 1
Offset: 0

Views

Author

Jean-François Alcover, Nov 28 2014

Keywords

Comments

Unexpectedly, it is conjectured (proof wanted) that the expression ((n+2)/2)^m * Sum_{k=1..n+1} 1/sin(k*Pi/(n+2))^(2m), n>=0, k>=0, always gives an integer.
For example, a(3,1) = (5/2)*(1/sin(Pi/5)^2 + 1/sin((2*Pi)/5)^2 + 1/sin((3*Pi)/5)^2 + 1/sin((4*Pi)/5)^2) = (5/2)*(2/(5/8 - sqrt(5)/8) + 2/(5/8 + sqrt(5)/8)), which simplifies to 20.

Examples

			Array a(n,m) begins:
  1,  1,   1,    1,     1,      1,       1,        1, ... 1 (A000012)
  2,  4,   8,   16,    32,     64,     128,      256, ... 2^(m+1) (A000079)
  3, 10,  36,  136,   528,   2080,    8256,    32896, ... A007582
  4, 20, 120,  800,  5600,  40000,  288000,  2080000, ... A093123
  5, 35, 329, 3611, 42065, 499955, 5980889, 71698571, ... not in the OEIS
  ...
1st column is n+1 (A000027).
2nd column is A000292.
3rd column is not in the OEIS.
		

Crossrefs

Programs

  • Mathematica
    a[n_, m_] := ((n + 2)/2)^m*Sum[1/Sin[k*(Pi/(n + 2))]^(2*m), {k, 1, n + 1}]; Table[a[n - m, m] // FullSimplify, {n, 0, 10}, {m, 0, n}] // Flatten
  • PARI
    a(n,m)={t=Pi/(n+2);u=1+n/2;round(sum(k=1,n+1,(u/sin(k*t)^2)^m))} \\ M. F. Hasler, Dec 03 2014

Formula

First formulas for rows:
a(0,m) = 1.
a(1,m) = 2^(m + 1).
a(2,m) = 2^m + 2^(2*m + 1).
a(3,m) = 2*((5 - sqrt(5))^m + (5 + sqrt(5))^m).
a(4,m) = 2^(2*m + 1) + 3^m + 2^(2*m + 1)*3^m.
First formulas for columns:
a(n,0) = n + 1.
a(n,1) = (n + 1)*(n + 2)*(n + 3)/6.
a(n,2) = coefficient of x^n in the expansion of (1 - x^4)/(1 - x)^8.
Let b(N,m) be (N/2)^m times the coefficient of x^(2*m) in 1-N*x*cot(N*arcsin(x))/ sqrt(1-x^2). Then for m>0, a(n,m) = b(n+2,m). - Ira M. Gessel, Apr 04 2023