cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247250 Indices of Pell numbers having exactly one primitive prime factor.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 24, 29, 30, 32, 33, 35, 38, 41, 42, 50, 53, 54, 56, 58, 59, 66, 69, 89, 90, 94, 95, 97, 99, 101, 104, 117, 118, 120, 135, 138, 160, 167, 181, 191, 210, 221, 237, 242, 247
Offset: 1

Views

Author

Eric Chen, Nov 29 2014

Keywords

Comments

Conjecture: The n-th Pell number A000129(n) has a primitive prime factor for all n > 1. (The n-th Fibonacci number A000045(n) has a primitive prime factor for all n except n = 0, 1, 2, 6, and 12.)
For prime p, all prime factors of Pell(p) are primitive. Hence the only primes in this sequence are the prime numbers in A096650, which gives the indices of prime Pell numbers.

Examples

			Pell(1) = 1, which has no prime factors, so 1 is not in this sequence.
Pell(4) = 12 = 2^2 * 3, but 2 is not a primitive prime factor, and 3 is the only primitive prime factor of Pell(4), so 4 is in this sequence.
Pell(5) = 29, which is a prime and the only primitive prime factor of itself, so 5 is in this sequence.
Pell(12) = 13860 = 2^2 * 3^2 * 5 * 7 * 11, but none of 2, 3, 5, 7 is a primitive prime factor, and 11 is the only primitive prime factor of Pell(12), so 12 is in this sequence.
Pell(14) = 80782 = 2 * 13^2 * 239, but neither 2 nor 13 is a primitive prime factor, and 239 is the only primitive prime factor of Pell(14), so 14 is in this sequence.
Pell(19) = 6625109 = 37 * 179057, both of which are primitive prime factors of Pell(19), so 19 is not in this sequence.
		

Crossrefs

Cf. A152012 (for Fibonacci numbers).

Programs

  • Mathematica
    Select[Range[1000], PrimePowerQ[(1-Sqrt[2])^EulerPhi[#]*Cyclotomic[#, (1+Sqrt[2])/(1-Sqrt[2])]/GCD[Cyclotomic[#, (1+Sqrt[2])/(1-Sqrt[2])], # ]]&] - Eric Chen, Dec 12 2014
    pell[n_] := pell[n] = ((1+Sqrt[2])^n-(1-Sqrt[2])^n )/(2*Sqrt[2]) // Round; primitivePrimeFactors[n_] := Cases[FactorInteger[pell[n]][[All, 1]], p_ /; And @@ (GCD[p, #] == 1 & /@ Array[pell, n-1])]; Reap[For[n=2, n <= 200, n++, If[Length[primitivePrimeFactors[n]] == 1, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 12 2014 *)
  • PARI
    pell(n) = imag((1 + quadgen(8))^n);
    isok(pf, vp) = sum(i=1, #pf, vecsearch(vp, pf[i]) == 0) == 1;
    lista(nn) = {vp = []; for (n=2, nn, pf = factor(pell(n))[,1]; if (isok(pf, vp), print1(n, ", ")); vp = vecsort(concat(vp, pf),, 8););} \\ Michel Marcus, Nov 29 2014

Extensions

Two incorrect terms (72 and 110) deleted by Colin Barker, Nov 29 2014
More terms from Colin Barker, Nov 30 2014