cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247285 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n (n>=1) having k (0<=k<=n-1) upper interactions.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 14, 1, 1, 9, 36, 59, 26, 1, 1, 11, 58, 150, 162, 46, 1, 1, 13, 85, 300, 543, 408, 79, 1, 1, 15, 117, 523, 1335, 1771, 966, 133, 1, 1, 17, 154, 833, 2747, 5303, 5335, 2184, 221, 1, 1, 19, 196, 1244, 5031, 12792, 19272, 15099, 4767, 364, 1
Offset: 1

Views

Author

Emeric Deutsch, Sep 11 2014

Keywords

Comments

An upper interaction in a Dyck path is an occurrence of a string d^k u^k for some k>=1; here u = (1,1) and d = (1,-1). For example, the Dyck path uu[d(du)u]dd has 2 upper interactions, shown between parentheses.
Number of entries in row n is n.
Sum of entries in row n is the Catalan number A000108(n).
Sum(k*T(n,k), k>=0) = A172061(n-2).
The statistic "number of lower interactions", mentioned in the Le Borgne reference is basically identical with the statistic "pyramid weight" of the Denise and Simion reference (see A091866 and the bottom of p. 8 of the Le Borgne reference).
T(n+1,n) = A001924(n) for n>=1. - Alois P. Heinz, Sep 11 2014

Examples

			Row 3 is 1,3,1. Indeed, the number of upper interactions in uuuddd, uududd, uuddud, uduudd, and ududud are 0, 1, 1, 1, and 2, respectively.
Triangle starts:
1;
1,1;
1,3,1;
1,5,7,1;
1,7,19,14,1;
1,9,36,59,26,1;
		

Crossrefs

Programs

  • Maple
    q := u*t: s := ((1+t-2*q-sqrt((1-t)*(1-t-4*q+4*q^2)))*(1/2))/(t*(1-q)): Q := proc (x, n) options operator, arrow: product(1-q^k*x, k = 0 .. n-1) end proc: A := -t*add(((q-t)*s/(1-q))^n*q^(binomial(n+2, 2)-1)/(Q(q, n)*Q(q*t*s^2, n)), n = 0 .. 15)/add(((q-t)*s/(1-q))^n*q^binomial(n+2, 2)*(1-t*q^n*s)/(Q(q, n)*Q(q*t*s^2, n)*(1-q^n*s)*(1-q^(n+1)*s)), n = 0 .. 15): Aser := simplify(series(A, t = 0, 22)): for n to 16 do P[n] := sort(coeff(Aser, t, n)) end do: for n to 13 do seq(coeff(P[n], u, j), j = 0 .. n-1) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t, c) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, false, max(0, c-1))*
         `if`(c>0, z, 1)+b(x-1, y-1, true, 1+`if`(t, c, 0)))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n-1))(b(2*n, 0, false, 0)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Sep 11 2014
  • Mathematica
    b[x_, y_, t_, c_] := b [x, y, t, c] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, False, Max[0, c-1]]*If[c>0, z, 1] + b[x-1, y-1, True, 1 + If[t, c, 0] ] ] ] ]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, n-1}]][b[2*n, 0, False, 0]]; Table[T[n], {n, 1, 25}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

The g.f. A(t,u), where t marks semilength and u marks upper interactions, is given in Proposition 2 of the Le Borgne reference. It is extremely complex; the Maple program follows it (blindly), except that the infinite sums have been replaced by summations from n=0 to n=15.