A247285 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n (n>=1) having k (0<=k<=n-1) upper interactions.
1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 14, 1, 1, 9, 36, 59, 26, 1, 1, 11, 58, 150, 162, 46, 1, 1, 13, 85, 300, 543, 408, 79, 1, 1, 15, 117, 523, 1335, 1771, 966, 133, 1, 1, 17, 154, 833, 2747, 5303, 5335, 2184, 221, 1, 1, 19, 196, 1244, 5031, 12792, 19272, 15099, 4767, 364, 1
Offset: 1
Examples
Row 3 is 1,3,1. Indeed, the number of upper interactions in uuuddd, uududd, uuddud, uduudd, and ududud are 0, 1, 1, 1, and 2, respectively. Triangle starts: 1; 1,1; 1,3,1; 1,5,7,1; 1,7,19,14,1; 1,9,36,59,26,1;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
- Y. Le Borgne, Counting upper interactions in Dyck paths, Sem. Lotharingien de Combinatoire, 54, 2006, Article B54f.
Programs
-
Maple
q := u*t: s := ((1+t-2*q-sqrt((1-t)*(1-t-4*q+4*q^2)))*(1/2))/(t*(1-q)): Q := proc (x, n) options operator, arrow: product(1-q^k*x, k = 0 .. n-1) end proc: A := -t*add(((q-t)*s/(1-q))^n*q^(binomial(n+2, 2)-1)/(Q(q, n)*Q(q*t*s^2, n)), n = 0 .. 15)/add(((q-t)*s/(1-q))^n*q^binomial(n+2, 2)*(1-t*q^n*s)/(Q(q, n)*Q(q*t*s^2, n)*(1-q^n*s)*(1-q^(n+1)*s)), n = 0 .. 15): Aser := simplify(series(A, t = 0, 22)): for n to 16 do P[n] := sort(coeff(Aser, t, n)) end do: for n to 13 do seq(coeff(P[n], u, j), j = 0 .. n-1) end do; # yields sequence in triangular form # second Maple program: b:= proc(x, y, t, c) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, expand(b(x-1, y+1, false, max(0, c-1))* `if`(c>0, z, 1)+b(x-1, y-1, true, 1+`if`(t, c, 0))))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..n-1))(b(2*n, 0, false, 0)): seq(T(n), n=1..15); # Alois P. Heinz, Sep 11 2014
-
Mathematica
b[x_, y_, t_, c_] := b [x, y, t, c] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, False, Max[0, c-1]]*If[c>0, z, 1] + b[x-1, y-1, True, 1 + If[t, c, 0] ] ] ] ]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, n-1}]][b[2*n, 0, False, 0]]; Table[T[n], {n, 1, 25}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
Formula
The g.f. A(t,u), where t marks semilength and u marks upper interactions, is given in Proposition 2 of the Le Borgne reference. It is extremely complex; the Maple program follows it (blindly), except that the infinite sums have been replaced by summations from n=0 to n=15.
Comments