A247295 Number of weighted lattice paths B(n) having no uhd and no uHd strings.
1, 1, 2, 4, 7, 14, 30, 64, 141, 316, 713, 1626, 3740, 8659, 20176, 47274, 111302, 263201, 624860, 1488736, 3558412, 8530533, 20505468, 49413242, 119347708, 288873639, 700582008, 1702190653, 4142880297, 10099352082, 24656876772, 60283224645, 147581756005
Offset: 0
Keywords
Examples
a(6)=30 because among the 37 (=A004148(7)) members of B(6) only uhdhh, huhdh, hhuhd, Huhd, uhdH, uHdh, and huHd contain uhd or uHd (or both).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
Programs
-
Maple
eq := G = 1+z*G+z^2*G+z^3*(G-z-z^2)*G: G := RootOf(eq, G): Gser := series(G, z = 0, 37): seq(coeff(Gser, z, n), n = 0 .. 35); # second Maple program: b:= proc(n, y, t) option remember; `if`(y<0 or y>n or t=3, 0, `if`(n=0, 1, b(n-1, y-1, `if`(t=2, 3, 0))+b(n-1, y, `if`(t=1, 2, 0))+`if`(n>1, b(n-2, y, `if`(t=1, 2, 0))+ b(n-2, y+1, 1), 0))) end: a:= n-> b(n, 0$2): seq(a(n), n=0..40); # Alois P. Heinz, Sep 16 2014
-
Mathematica
b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n || t == 3, 0, If[n == 0, 1, b[n-1, y-1, If[t == 2, 3, 0]] + b[n-1, y, If[t == 1, 2, 0]] + If[n>1, b[n-2, y, If[t == 1, 2, 0]] + b[n-2, y+1, 1], 0]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
Formula
G.f. G = G(z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z- z^2 ).
D-finite with recurrence (n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +3*(n-3)*a(n-4) +4*(-n+6)*a(n-6) +(-2*n+15)*a(n-7) +(n-9)*a(n-8) +(2*n-21)*a(n-9) +(n-12)*a(n-10)=0. - R. J. Mathar, Jul 26 2022
Comments