A247297 Triangle read by rows: T(n,k) is the number of weighted lattice paths B(n) having k uudd strings.
1, 1, 2, 4, 8, 17, 36, 1, 80, 2, 180, 5, 410, 13, 946, 32, 2203, 80, 5173, 199, 1, 12233, 499, 3, 29108, 1255, 9, 69643, 3161, 28, 167437, 7984, 81, 404311, 20206, 231, 980125, 51228, 650, 1, 2384441, 130090, 1812, 4, 5819576, 330835, 5016, 14
Offset: 0
Examples
T(6,1)=1 because among the 37 (=A004148(7)) paths in B(6) only uudd contains uudd. T(13,2)=3 because we have huudduudd, uuddhuudd, and uudduuddh. Triangle starts: 1; 1; 2; 4; 8; 17; 36,1; 80,2;
Links
- M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
Programs
-
Maple
eq := G = 1+z*G+z^2*G+z^3*(G-z^3+t*z^3)*G: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, k), k = 0 .. floor((1/6)*n)) end do; # yields sequence in triangular form
Formula
G.f. G = G(t,z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z^3 + t*z^3).
Comments