cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247308 Layer counting sequence in the order-5 cubic honeycomb.

Original entry on oeis.org

1, 7, 37, 163, 661, 2643, 10497, 41511, 164073, 648495, 2562749, 10127291, 40020845, 158152811, 624980489, 2469769903, 9759926065, 38568829879, 152414547541, 602304889075, 2380161078405, 9405812345187, 37169461719153, 146884589311479, 580451843386809, 2293803210617951, 9064547264192237, 35820865853787467
Offset: 0

Views

Author

Tim Hutton, Sep 11 2014

Keywords

Comments

The number of cubes reachable by at most n steps across faces in the {4,3,5} tessellation of hyperbolic space, for n >= 0.

Crossrefs

For the {5,3,4} tessellation: A076765.
For the {5,4} tessellation: A054888.

Formula

a(d+17) = 3*a(d+16) + 2*a(d+15) + 7*a(d+14) + a(d+13) - 5*a(d+12) + 3*a(d+11) - 2*a(d+10) - 18*a(d+9) + 18*a(d+8) + 2*a(d+7) - 3*a(d+6) + 5*a(d+5) - a(d+4) - 7*a(d+3) - 2*a(d+2) - 3*a(d+1) + a(d) (conjectured, found experimentally and tested from 19 to 135). - Eryk Kopczynski, Jul 04 2020
Conjectured G.f.: (1+x) * (1+2*x+8*x^2+9*x^3+8*x^4+17*x^5+10*x^6+10*x^8+10*x^10+17*x^11+8*x^12+9*x^13+8*x^14+2*x^15+x^16) / ((1-x)^2 * (1-2*x-4*x^2-11*x^3-12*x^4-7*x^5-10*x^6-8*x^7+10*x^8-8*x^9-10*x^10-7*x^11-12*x^12-11*x^13-4*x^14-2*x^15+x^16)). - Natalia L. Skirrow, Apr 29 2025

Extensions

Offset and terms corrected and more terms added by Eryk Kopczynski, Jul 04 2020