A247308 Layer counting sequence in the order-5 cubic honeycomb.
1, 7, 37, 163, 661, 2643, 10497, 41511, 164073, 648495, 2562749, 10127291, 40020845, 158152811, 624980489, 2469769903, 9759926065, 38568829879, 152414547541, 602304889075, 2380161078405, 9405812345187, 37169461719153, 146884589311479, 580451843386809, 2293803210617951, 9064547264192237, 35820865853787467
Offset: 0
Keywords
Links
- Eryk Kopczynski, Table of n, a(n) for n = 0..999
- Tim Hutton, Generating code in C++, using VTK (gives incorrect terms from some point on!)
- Eryk Kopczynski, HyperRogue. Run with parameters -geo 435h -csolve; compile with -DCAP_GMP=0 to get the conjectured formula.
Formula
a(d+17) = 3*a(d+16) + 2*a(d+15) + 7*a(d+14) + a(d+13) - 5*a(d+12) + 3*a(d+11) - 2*a(d+10) - 18*a(d+9) + 18*a(d+8) + 2*a(d+7) - 3*a(d+6) + 5*a(d+5) - a(d+4) - 7*a(d+3) - 2*a(d+2) - 3*a(d+1) + a(d) (conjectured, found experimentally and tested from 19 to 135). - Eryk Kopczynski, Jul 04 2020
Conjectured G.f.: (1+x) * (1+2*x+8*x^2+9*x^3+8*x^4+17*x^5+10*x^6+10*x^8+10*x^10+17*x^11+8*x^12+9*x^13+8*x^14+2*x^15+x^16) / ((1-x)^2 * (1-2*x-4*x^2-11*x^3-12*x^4-7*x^5-10*x^6-8*x^7+10*x^8-8*x^9-10*x^10-7*x^11-12*x^12-11*x^13-4*x^14-2*x^15+x^16)). - Natalia L. Skirrow, Apr 29 2025
Extensions
Offset and terms corrected and more terms added by Eryk Kopczynski, Jul 04 2020
Comments