cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247309 Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 <= k <= 2, consisting of segments given by the vectors (1,1), (1,0), (1,-1), (1,-2).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 3, 3, 5, 8, 8, 13, 21, 21, 34, 55, 55, 89, 144, 144, 233, 377, 377, 610, 987, 987, 1597, 2584, 2584, 4181, 6765, 6765, 10946, 17711, 17711, 28657, 46368, 46368, 75025, 121393, 121393, 196418, 317811, 317811, 514229, 832040, 832040
Offset: 0

Views

Author

Clark Kimberling, Sep 12 2014

Keywords

Comments

Every member of T is a Fibonacci number, and the sum of the numbers in column n is A000045(2n+2).

Examples

			First 10 columns:
0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584
0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584
1 .. 1 .. 2 .. 5 .. 13 .. 34 .. 89 ... 233 .. 610 ... 1597
T(2,2) counts these 3 paths, given as vector sums applied to (0,0):
(1,2) + (1,0); (1,1) + (1,1); (1,0) + (1,2).
		

Crossrefs

Programs

  • Mathematica
    t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[1, 2] = 1;
    t[n_, 0] := t[n, 0] = t[n - 1, 0] + t[n - 1, 1];
    t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2];
    t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2]
    TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]] (*  array *)
    Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (*  A247309 *)

Formula

Let F = A000045 (Fibonacci numbers); then
(row 0, the bottom row) = (F(2n)), n >= 0;
(row 1, the middle row) = (F(2n)), n >= 0;
(row 2, the top row) = (F(2n-1)), n >= 0.
(n-th column sum) = (F(2n+2)), n >= 0.