A247309 Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 <= k <= 2, consisting of segments given by the vectors (1,1), (1,0), (1,-1), (1,-2).
1, 0, 0, 1, 1, 1, 2, 3, 3, 5, 8, 8, 13, 21, 21, 34, 55, 55, 89, 144, 144, 233, 377, 377, 610, 987, 987, 1597, 2584, 2584, 4181, 6765, 6765, 10946, 17711, 17711, 28657, 46368, 46368, 75025, 121393, 121393, 196418, 317811, 317811, 514229, 832040, 832040
Offset: 0
Examples
First 10 columns: 0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584 0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584 1 .. 1 .. 2 .. 5 .. 13 .. 34 .. 89 ... 233 .. 610 ... 1597 T(2,2) counts these 3 paths, given as vector sums applied to (0,0): (1,2) + (1,0); (1,1) + (1,1); (1,0) + (1,2).
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[1, 2] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 0] + t[n - 1, 1]; t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2]; t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2] TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]] (* array *) Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* A247309 *)
Formula
Let F = A000045 (Fibonacci numbers); then
(row 0, the bottom row) = (F(2n)), n >= 0;
(row 1, the middle row) = (F(2n)), n >= 0;
(row 2, the top row) = (F(2n-1)), n >= 0.
(n-th column sum) = (F(2n+2)), n >= 0.
Comments