A247321
Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,0) to (n,k), where 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 4, 2, 2, 5, 5, 6, 5, 7, 13, 10, 7, 18, 22, 20, 18, 29, 45, 40, 29, 63, 87, 74, 63, 116, 166, 150, 116, 229, 329, 282, 229, 445, 627, 558, 445, 856, 1232, 1072, 856, 1677, 2373, 2088, 1677, 3229, 4621, 4050, 3229
Offset: 0
First 10 columns:
0 .. 0 .. 2 .. 2 .. 6 .. 10 .. 20 .. 40 .. 74 .. 150
0 .. 1 .. 1 .. 4 .. 5 .. 13 .. 22 .. 45 .. 87 .. 166
0 .. 1 .. 1 .. 2 .. 5 .. 7 ... 18 .. 29 .. 63 .. 116
1 .. 0 .. 1 .. 1 .. 2 .. 5 ... 7 ... 18 .. 29 .. 63
T(3,2) counts these 4 paths, given as vector sums applied to (0,0):
(1,2) + (1,1) + (1, -1)
(1,1) + (1,2) + (1,-1)
(1,2) + (1,-1) + (1,1)
(1,1) + (1,-1) + (1,2)
Partial sums of second components in each vector sum give the 3 integer strings described in Comments: (0,2,3,2), (0,1,3,2), (0,2,1,2), (0,1,0,2).
-
z = 25; t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[0, 3] = 0;
t[1, 3] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2];
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3];
t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2];
u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, 3}]] (* A247321 *)
TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 3}]]]]
u1 = Table[t[n, k], {n, 0, z}, {k, 0, 3}];
v = Map[Total, u1] (* A247322 column sums *)
Table[t[n, 0], {n, 0, z}] (* A247323, row 0 *)
Table[t[n, 1], {n, 0, z}] (* A247323 shifted, row 1 *)
Table[t[n, 2], {n, 0, z}] (* A247325, row 2 *)
Table[t[n, 3], {n, 0, z}] (* A247326, row 3 *)
A247322
Number of paths from (0,0) to the line x = n, each consisting of segments given by the vectors (1,1), (1,2), (1,-1), with vertices (i,k) satisfying 0 <= k <= 3.
Original entry on oeis.org
1, 2, 5, 9, 18, 35, 67, 132, 253, 495, 956, 1859, 3605, 6994, 13577, 26333, 51114, 99159, 192431, 373372, 724497, 1405819, 2727804, 5293079, 10270553, 19929026, 38670013, 75035105, 145597538, 282516315, 548192811, 1063708916, 2064013525, 4004996055
Offset: 0
a(2) counts these 5 paths, each represented by a vector sum applied to (0,0): (0,2) + (0,1); (0,1) + (0,2); (0,1) + (0,1); (0,2) + (0,-1), (0,1) + (0,-1).
-
z = 25; t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[0, 3] = 0;
t[1, 3] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2];
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3];
t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2];
u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, 3}]] (* A247321 *)
TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 3}]]]]
u1 = Table[t[n, k], {n, 0, z}, {k, 0, 3}];
v = Map[Total, u1] (* A247322 column sums *)
A247326
Number of paths from (0,0) to (n,3), with vertices (i,k) satisfying 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).
Original entry on oeis.org
0, 0, 2, 2, 6, 10, 20, 40, 74, 150, 282, 558, 1072, 2088, 4050, 7850, 15254, 29562, 57412, 111344, 216106, 419294, 813594, 1578750, 3063264, 5944144, 11533698, 22380210, 43426118, 84263882, 163505076, 317263672, 615616874, 1194537286, 2317872890, 4497581934
Offset: 0
a(4) counts these 6 paths, each represented by a vector sum applied to (0,0):
(1,2) + (1,1) + (1,-1) + (1,1);
(1,1) + (1,2) + (1,-1) + (1,1);
(1,2) + (1,-1) + (1,1) + (1,1);
(1,1) + (1,-1) + (1,2) + (1,1);
(1,1) + (1,-1) + (1,1) + (1,2);
(1,1) + (1,1) + (1,-1) + (1,2).
-
z = 25; t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[0, 3] = 0;
t[1, 3] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2];
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3];
t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2];
Table[t[n, 3], {n, 0, z}]; (* A247326 *)
A247352
Rectangular array read by upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 1, 1, 0, 2, 2, 1, 2, 2, 3, 4, 2, 5, 8, 5, 5, 10, 12, 13, 10, 17, 28, 22, 17, 38, 49, 45, 38, 66, 100, 87, 66, 138, 191, 166, 138, 257, 370, 329, 257, 508, 724, 627, 508, 981, 1392, 1232, 981, 1900, 2721, 2373, 1900, 3702, 5254, 4621, 3702
Offset: 0
First 10 columns:
0 .. 1 .. 1 .. 4 .. 5 .. 13 .. 22 .. 45 .. 87 ... 166
0 .. 1 .. 2 .. 3 .. 8 .. 12 .. 28 .. 49 .. 100 .. 191
1 .. 0 .. 2 .. 2 .. 5 .. 10 .. 17 .. 38 .. 66 ... 138
0 .. 1 .. 0 .. 2 .. 2 .. 5 ... 10 .. 17 .. 38 ... 66
T(5,0) counts these 5 paths, given as vector sums applied to (0,1):
(1,1) + (1,1) + (1,-1) + (1,-1) + (1 -1)
(1,1) + (1,-1) + (1,1) + (1,-1) + (1,-1)
(1,-1) + (1,1) + (1,1) + (1,-1) + (1,-1)
(1,1) + (1,-1) + (1,-1) + (1,1) + (1,-1)
(1,-1) + (1,1) + (1,-1) + (1,1) + (1,-1)
Partial sums of second components in each vector sum give the 3 integer strings described in comments:
(1,2,3,2,1,0),
(1,2,1,2,1,0),
(1,0,1,2,1,0),
(1,2,1,0,1,0),
(1,0,1,0,1,0).
-
z = 50; t[0, 0] = 0; t[0, 1] = 1; t[0, 2] = 0; t[0, 3] = 0;
t[1, 3] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2]
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3]
t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2]
u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, 3}]] (* A247352 *)
TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 3}]]]] (* array *)
v = Map[Total, u1] (* A247353 *)
Table[t[n, 0], {n, 0, z}] (* row 0, A247354*)
Table[t[n, 1], {n, 0, z}] (* row 1, cf. row 0 *)
Table[t[n, 2], {n, 0, z}] (* row 2, A247355 *)
Table[t[n, 3], {n, 0, z}] (* row 3, A247325 *)
A247323
Number of paths from (0,0) to (n,0), with vertices (i,k) satisfying 0 <= k <= 3, consisting of segments given by the vectors (1,1), (1,2), (1,-1).
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 7, 18, 29, 63, 116, 229, 445, 856, 1677, 3229, 6298, 12185, 23675, 45922, 89097, 172931, 335460, 651065, 1263145, 2451184, 4756105, 9228777, 17907538, 34747357, 67424063, 130828370, 253859365, 492585879, 955810772, 1854647997, 3598744709
Offset: 0
a(5) counts these 5 paths, each represented by a vector sum applied to (0,0):
(1,2) + (1,1) + (1,-1) + (1,-1) + (1,-1);
(1,1) + (1,2) + (1,-1) + (1,-1) + (1,-1);
(1,2) + (1,-1) + (1,1) + (1,-1) + (1,-1);
(1,1) + (1,-1) + (1,2) + (1,-1) + (1,-1);
(1,2) + (1,-1) + (1,-1) + (1,1) + (1,-1).
-
z = 25; t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[0, 3] = 0;
t[1, 3] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2];
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3];
t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2];
Table[t[n, 0], {n, 0, z}]; (* A247323 *)
Showing 1-5 of 5 results.
Comments