cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247343 Moebius transform applied four times to sequence 1,0,0,0,....

Original entry on oeis.org

1, -4, -4, 6, -4, 16, -4, -4, 6, 16, -4, -24, -4, 16, 16, 1, -4, -24, -4, -24, 16, 16, -4, 16, 6, 16, -4, -24, -4, -64, -4, 0, 16, 16, 16, 36, -4, 16, 16, 16, -4, -64, -4, -24, -24, 16, -4, -4, 6, -24, 16, -24, -4, 16, 16, 16, 16, 16, -4, 96, -4, 16, -24, 0, 16, -64, -4, -24, 16, -64
Offset: 1

Views

Author

Enrique Pérez Herrero, Sep 14 2014

Keywords

Comments

Multiplicative because the Moebius transform of a multiplicative sequence is multiplicative. - Andrew Howroyd, Jul 25 2018

Crossrefs

Programs

  • Mathematica
    tau[1, n_Integer]:=1; SetAttributes[tau, Listable];
    tau[k_Integer, n_Integer]:=Plus@@(tau[k-1, Divisors[n]])/; k > 1;
    tau[k_Integer, n_Integer]:=Plus@@(tau[k+1, Divisors[n]]*MoebiusMu[n/Divisors[n]]); k<1;
    Table[tau[-4, n], {n, 70}]
    f[p_, e_] := (-1)^e * Binomial[4, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    seq(n)={my(v=vector(n, n, n==1)); for(k=1, 4, v=dirmul(v, vector(#v, n, moebius(n)))); v} \\ Andrew Howroyd, Jul 25 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^4)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Dirichlet g.f.: 1/zeta(s)^4.
Multiplicative with a(p^e) = (-1)^e * binomial(4, e). - Amiram Eldar, Sep 11 2020