cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247371 Number of groups of order n for which all Sylow subgroups are cyclic.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 1, 4, 1, 3, 1, 4, 1, 2, 1, 2, 1, 2, 1, 6, 1, 3, 1, 2, 1, 6, 1, 2, 1
Offset: 1

Views

Author

Eric M. Schmidt, Sep 15 2014

Keywords

Comments

For squarefree n this gives the total number of groups of order n.

Crossrefs

Programs

  • Sage
    def pnu(pp, m) : return prod(gcd(pp, q-1) for q in prime_divisors(m))
    def a(n) : s = n.radical(); return sum(prod(sum((pnu(p^(k+1), s//prod(c)) - pnu(p^k, s//prod(c))) // (p^k*(p-1)) for k in range(n.valuation(p))) for p in c) for c in powerset(prime_divisors(n)))

Formula

a(A005117(n)) = A000001(A005117(n)). - Michel Marcus, Sep 15 2014