cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247376 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 2, 2, 3, 5, 5, 15, 8, 8, 35, 33, 13, 80, 131, 48, 21, 171, 409, 279, 34, 355, 1180, 1375, 384, 55, 715, 3128, 5335, 2895, 89, 1410, 7858, 18510, 17029, 3840, 144, 2730, 18851, 58253, 78609, 35685, 233, 5208, 43629, 171059, 317758, 243873, 46080, 377, 9810
Offset: 0

Views

Author

Clark Kimberling, Oct 23 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = 1 + (2*x + 1)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A059480(n+1) for n >= 0.
(Column 1) is essentially A000045 (Fibonacci numbers).

Crossrefs

Programs

  • Mathematica
    z = 15; f[x_, n_] := 1 + (2 x + 1)/f[x, n - 1]; f[x_, 1] = 1;
    t = Table[Factor[f[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A247376 array *)
    Flatten[CoefficientList[u, x]] (* A247376 sequence *)
  • PARI
    rown(n) = if (n==0, 1, 1 + (2*x+1)/rown(n-1));
    tabl(nn) = for (n=0, nn, print(Vecrev(numerator(rown(n))))); \\ Michel Marcus, Oct 28 2014

Formula

f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (2 + 2 x)/1, so that p(1,x) = 2 + 2 x;
f(2,x) = (3 + 5 x)/(2 + 2 x), so that p(2,x) = 3 + 5 x.
First 6 rows of the triangle of coefficients:
1
2 2
3 5
5 15 8
8 35 33
13 80 131 48