A247376 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
1, 2, 2, 3, 5, 5, 15, 8, 8, 35, 33, 13, 80, 131, 48, 21, 171, 409, 279, 34, 355, 1180, 1375, 384, 55, 715, 3128, 5335, 2895, 89, 1410, 7858, 18510, 17029, 3840, 144, 2730, 18851, 58253, 78609, 35685, 233, 5208, 43629, 171059, 317758, 243873, 46080, 377, 9810
Offset: 0
Links
- Clark Kimberling, Rows 0..100, flattened
Programs
-
Mathematica
z = 15; f[x_, n_] := 1 + (2 x + 1)/f[x, n - 1]; f[x_, 1] = 1; t = Table[Factor[f[x, n]], {n, 1, z}] u = Numerator[t] TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A247376 array *) Flatten[CoefficientList[u, x]] (* A247376 sequence *)
-
PARI
rown(n) = if (n==0, 1, 1 + (2*x+1)/rown(n-1)); tabl(nn) = for (n=0, nn, print(Vecrev(numerator(rown(n))))); \\ Michel Marcus, Oct 28 2014
Formula
f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (2 + 2 x)/1, so that p(1,x) = 2 + 2 x;
f(2,x) = (3 + 5 x)/(2 + 2 x), so that p(2,x) = 3 + 5 x.
First 6 rows of the triangle of coefficients:
1
2 2
3 5
5 15 8
8 35 33
13 80 131 48
Comments