A247393 Numbers n such that the second maximal prime <= sqrt(n) is the least prime divisor of n.
10, 12, 14, 16, 18, 20, 22, 24, 27, 33, 39, 45, 55, 65, 85, 95, 115, 133, 161, 187, 209, 253, 299, 391, 493, 527, 551, 589, 703, 779, 817, 851, 943, 1073, 1189, 1247, 1363, 1457, 1643, 1739, 1927, 2173, 2279, 2537, 2623, 2867, 3149, 3337, 3431, 3551, 3953
Offset: 1
Keywords
Examples
a(1)=10. Indeed, in interval [2,sqrt(10)] we have two primes: 2 and 3. Maximal from them 3, the second maximal is 2, and 2=lpf(10).
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
- Vladimir Shevelev, A classification of the positive integers over primes
Crossrefs
Cf. A156759.
Programs
-
Mathematica
Select[Range[4000], Prime[PrimePi[Sqrt[#]]-1] == FactorInteger[#][[1,1]] &] (* Indranil Ghosh, Mar 08 2017 *)
-
PARI
select(n->prime(primepi(sqrtint(n))-1)==factor(n)[1, 1], vector(10^4, x, x+8)) \\ Jens Kruse Andersen, Sep 17 2014
Formula
lpf(a(n)) = prime(pi(sqrt(a(n)))-1), where pi(n) = A000720(n).
Extensions
More terms from Peter J. C. Moses, Sep 16 2014
a(52..10000) from Jens Kruse Andersen, Sep 17 2014
Comments