cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247398 Decimal expansion of a constant 'v' such that the asymptotic variance of the distribution of the longest cycle given a random n-permutation evaluates as v*n^2.

Original entry on oeis.org

0, 3, 6, 9, 0, 7, 8, 3, 0, 0, 6, 4, 8, 5, 2, 2, 0, 2, 1, 7, 7, 1, 0, 7, 0, 0, 2, 9, 2, 9, 3, 2, 7, 6, 4, 0, 2, 2, 4, 6, 2, 2, 3, 3, 1, 0, 5, 8, 6, 8, 5, 1, 9, 6, 4, 7, 6, 2, 2, 7, 8, 2, 0, 7, 3, 0, 4, 8, 9, 1, 9, 4, 7, 1, 5, 3, 0, 8, 0, 6, 2, 8, 5, 1, 1, 8, 9, 3, 0, 4, 4, 9, 1, 0, 3, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Sep 16 2014

Keywords

Examples

			0.03690783006485220217710700292932764...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4 Golomb-Dickman Constant, p. 285.

Crossrefs

Cf. A084945.

Programs

  • Maple
    evalf(int((x-exp(Ei(-x))*x),x=0..infinity) - int( (1-exp(Ei(-x))),x=0..infinity)^2, 50); # Vaclav Kotesovec, Aug 12 2019
  • Mathematica
    v = NIntegrate[x - E^ExpIntegralEi[-x]*x, {x, 0, Infinity}, WorkingPrecision -> 80] - NIntegrate[1 - E^ExpIntegralEi[-x], {x, 0, Infinity}, WorkingPrecision -> 80]^2; Join[{0}, RealDigits[v, 10, 40] // First]

Formula

v = integral_{0..infinity} x-e^Ei(-x)*x dx - (integral_{0..infinity} 1-e^Ei(-x) dx)^2, where Ei is the exponential integral function. [corrected by Vaclav Kotesovec, Aug 12 2019]

Extensions

More digits from Vaclav Kotesovec, Aug 12 2019