cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247415 Number of friezes of type D_n.

Original entry on oeis.org

1, 4, 14, 51, 187, 695, 2606, 9842, 37386, 142693, 546790, 2102312, 8106308, 31335060, 121390028, 471159761, 1831860961, 7133082300, 27813493104, 108585087657, 424396534100, 1660418620528, 6502345229958, 25485677806201, 99969379431223, 392424954930562, 1541494622610616, 6059022365002926, 23829761312067896
Offset: 1

Views

Author

Bruce Fontaine, Sep 16 2014

Keywords

Crossrefs

Cf. A000108, A247416 and A000984, the number of friezes of type A_n, B_n and C_n.

Programs

  • Maple
    a:= n -> add(numtheory:-tau(m)*binomial(2*n-m-1,n-m),m=1..n):
    seq(a(n),n=1..100); # Robert Israel, Sep 17 2014
  • Mathematica
    a[n_] := Sum[DivisorSigma[0, m] Binomial[2n-m-1, n m], {m, 1, n}]
    Array[a, 29] (* Jean-François Alcover, Sep 18 2018 *)
  • PARI
    a(n) = sum(m=1,n, numdiv(m)*binomial(2*n-m-1,n-m) ); \\ Joerg Arndt, Sep 16 2014

Formula

a(n) = sum_{m=1..n} A000005(m)*binomial(2n-m-1,n-m).