A247416 Number of friezes of type B_n.
2, 6, 21, 75, 273, 1008, 3762, 14158, 53635, 204270, 781378, 2999906, 11553234, 44612760, 172671925, 669679793, 2601913466, 10125418060, 39459828905, 153977743500, 601545298200, 2352559491900, 9209476821105, 36084150102001, 141499349638556, 555292275455022, 2180689496523468, 8569380062230708
Offset: 1
Keywords
Links
- B. Fontaine and P.-G. Plamondon, Counting friezes in type D_n, arXiv:1409.3698 [math.CO], 2014.
Programs
-
PARI
a(n) = sum(m=1,sqrtint(n+1), binomial(2*n-m^2+1,n) ); \\ Joerg Arndt, Sep 16 2014
Formula
a(n) = sum_{m=1..floor(sqrt(n+1))} binomial(2n-m^2+1,n).