cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247436 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...14)*.

Original entry on oeis.org

43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42
Offset: 2

Views

Author

Vincenzo Librandi, Sep 19 2014

Keywords

Comments

Period 14, repeat [43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14].

Crossrefs

Programs

  • Magma
    &cat[[43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14]: n in [0..10]];
  • Mathematica
    CoefficientList[Series[(43 + 84 x + 43 x^2 + 84 x^3 + 29 x^4 + 15 x^5 + 15 x^6 + 42 x^7 + 85 x^8 + 42 x^9 + 85 x^10 + 28 x^11 + 15 x^12 + 14 x^13)/(1 - x^14), {x, 0, 60}], x]

Formula

G.f.: -x^2*(43+84*x+43*x^2+84*x^3+29*x^4+15*x^5+15*x^6+42*x^7+85*x^8+42*x^9+85
*x^10+28*x^11+15*x^12+14*x^13) / ( (x-1)*(1+x^6+x^5+x^4+x^3+x^2+x)*(1+x)*(1-x+
x^2-x^3+x^4-x^5+x^6) ).