A247453 T(n,k) = binomial(n,k)*A000111(n-k)*(-1)^(n-k), 0 <= k <= n.
1, -1, 1, 1, -2, 1, -2, 3, -3, 1, 5, -8, 6, -4, 1, -16, 25, -20, 10, -5, 1, 61, -96, 75, -40, 15, -6, 1, -272, 427, -336, 175, -70, 21, -7, 1, 1385, -2176, 1708, -896, 350, -112, 28, -8, 1, -7936, 12465, -9792, 5124, -2016, 630, -168, 36, -9, 1, 50521
Offset: 0
Examples
. 0: 1 . 1: -1 1 . 2: 1 -2 1 . 3: -2 3 -3 1 . 4: 5 -8 6 -4 1 . 5: -16 25 -20 10 -5 1 . 6: 61 -96 75 -40 15 -6 1 . 7: -272 427 -336 175 -70 21 -7 1 . 8: 1385 -2176 1708 -896 350 -112 28 -8 1 . 9: -7936 12465 -9792 5124 -2016 630 -168 36 -9 1 . 10: 50521 -79360 62325 -32640 12810 -4032 1050 -240 45 -10 1 .
Links
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- OEIS Wiki, Boustrophedon transform.
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a247453 n k = a247453_tabl !! n !! k a247453_row n = a247453_tabl !! n a247453_tabl = zipWith (zipWith (*)) a109449_tabl a097807_tabl
-
Mathematica
a111[n_] := n! SeriesCoefficient[(1+Sin[x])/Cos[x], {x, 0, n}]; T[n_, k_] := (-1)^(n-k) Binomial[n, k] a111[n-k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
-
PARI
A247453(n,k)=(-1)^(n-k)*binomial(n,k)*if(n>k, 2*abs(polylog(k-n, I)), 1) \\ M. F. Hasler, Oct 06 2017
Formula
Extensions
Edited by M. F. Hasler, Oct 06 2017
Comments