cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247453 T(n,k) = binomial(n,k)*A000111(n-k)*(-1)^(n-k), 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -2, 3, -3, 1, 5, -8, 6, -4, 1, -16, 25, -20, 10, -5, 1, 61, -96, 75, -40, 15, -6, 1, -272, 427, -336, 175, -70, 21, -7, 1, 1385, -2176, 1708, -896, 350, -112, 28, -8, 1, -7936, 12465, -9792, 5124, -2016, 630, -168, 36, -9, 1, 50521
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 17 2014

Keywords

Comments

Matrix inverse of A109449, the unsigned version of this sequence. More precisely, consider both of these triangles as the nonzero lower left of an infinite square array / matrix, filled with zeros above/right of the diagonal. Then these are mutually inverse of each other; in matrix notation: A247453 . A109449 = A109449 . A247453 = Identity matrix. In more conventional notation, for any m,n >= 0, Sum_{k=0..n} A247453(n,k)*A109449(k,m) = Sum_{k=0..n} A109449(n,k)*A247453(k,m) = delta(m,n), the Kronecker delta (= 1 if m = n, 0 else). - M. F. Hasler, Oct 06 2017

Examples

			.   0:      1
.   1:     -1      1
.   2:      1     -2      1
.   3:     -2      3     -3      1
.   4:      5     -8      6     -4      1
.   5:    -16     25    -20     10     -5     1
.   6:     61    -96     75    -40     15    -6     1
.   7:   -272    427   -336    175    -70    21    -7    1
.   8:   1385  -2176   1708   -896    350  -112    28   -8   1
.   9:  -7936  12465  -9792   5124  -2016   630  -168   36  -9   1
.  10:  50521 -79360  62325 -32640  12810 -4032  1050 -240  45 -10  1  .
		

Crossrefs

Programs

  • Haskell
    a247453 n k = a247453_tabl !! n !! k
    a247453_row n = a247453_tabl !! n
    a247453_tabl = zipWith (zipWith (*)) a109449_tabl a097807_tabl
    
  • Mathematica
    a111[n_] := n! SeriesCoefficient[(1+Sin[x])/Cos[x], {x, 0, n}];
    T[n_, k_] := (-1)^(n-k) Binomial[n, k] a111[n-k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
  • PARI
    A247453(n,k)=(-1)^(n-k)*binomial(n,k)*if(n>k, 2*abs(polylog(k-n, I)), 1) \\ M. F. Hasler, Oct 06 2017

Formula

T(n,k) = (-1)^(n-k) * A007318(n,k) * A000111(n-k), k = 0..n;
T(n,k) = (-1)^(n-k) * A109449(n,k); A109449(n,k) = abs(T(n,k));
abs(sum of row n) = A062162(n);
Sum_{k=0..n} T(n,k)*A000111(k) = 0^n.

Extensions

Edited by M. F. Hasler, Oct 06 2017