A247457 Numbers k such that d(r,k) = 1 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part.
2, 18, 22, 26, 35, 41, 45, 49, 65, 67, 71, 77, 79, 88, 90, 95, 98, 108, 110, 112, 117, 126, 133, 135, 138, 143, 145, 152, 155, 172, 175, 188, 194, 196, 203, 208, 210, 212, 221, 223, 230, 234, 239, 243, 260, 262, 268, 278, 292, 294, 296, 299, 310, 312, 319
Offset: 1
Examples
{1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,... {3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,... so that a(1) = 2.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]] (* A247455 *) Flatten[Position[t2, 1]] (* A247456 *) Flatten[Position[t3, 1]] (* A247457 *) Flatten[Position[t4, 1]] (* A247458 *)
Comments