A247481 G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^n * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)).
1, 1, -1, -1, -2, -14, -98, -822, -7948, -86590, -1046916, -13892842, -200653570, -3133064534, -52596852266, -944892417438, -18091297436248, -367841660947508, -7916992964642992, -179849204152350892, -4300928485463624458, -108013481381638292266
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..370
Crossrefs
Programs
-
Mathematica
nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^(2m-1))/AGF,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}]
Formula
a(n) ~ c * 12^n * n^n / (exp(n) * Pi^(2*n)), where c = -2*sqrt(6)/(Pi*exp(Pi^2/8)) = -0.45411558500969644... - Vaclav Kotesovec, Dec 01 2014, updated Aug 22 2017