A247482 G.f. A(x) satisfies: x = Sum_{n>=1} Product_{k=1..n} (1 - 1/A(x)^(2*k-1)).
1, 1, -2, 1, -3, -18, -124, -1174, -12150, -141536, -1816780, -25461723, -386593670, -6320496592, -110711177281, -2068814967831, -41089562943757, -864563028340432, -19214971769126974, -449887669808788433, -11069673481210168218, -285604488897863640237
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..370
Crossrefs
Programs
-
Mathematica
nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^(2m-1)),{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}]
-
PARI
{a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, prod(k=1, m, 1-1/Ser(A)^(2*k-1))), #A-1)); A[n+1]} for(n=0, 25, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 17 2024, after Paul D. Hanna
Formula
a(n) ~ c * 12^n * n^(n+1/2) / (exp(n) * Pi^(2*n)), where c = -12 / (Pi^(3/2) * exp(5*Pi^2/24)) = -0.275723765924812729... - Vaclav Kotesovec, Dec 01 2014, updated Aug 22 2017