A247489 Square array read by antidiagonals: A(k, n) = hypergeometric(P, Q, -k^k/(k-1)^(k-1)) rounded to the nearest integer, P = [(j-n)/k, j=0..k-1] and Q = [(j-n)/(k-1), j=0..k-2], k>=1, n>=0.
1, 0, 2, 0, 1, 4, 0, 1, 2, 8, 0, 1, 1, 3, 16, 0, 1, 1, 2, 5, 32, 0, 1, 1, 1, 3, 8, 64, 0, 0, 1, 1, 2, 4, 13, 128, 0, 0, 1, 1, 1, 3, 6, 21, 256, 0, 0, 1, 1, 1, 2, 4, 9, 34, 512, 0, 0, 1, 1, 1, 1, 3, 5, 13, 55, 1024, 0, 0, 1, 1, 1, 1, 2, 4, 7, 19, 89, 2048
Offset: 0
Examples
First few rows of the square array: [k\n] if conjecture true [1], 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... A000079 n>=0 [2], 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... 'A000045' n>=1 [3], 0, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, ... A000930 n>=4 [4], 0, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, ... A003269 n>=9 [5], 0, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 11, 15, ... A003520 n>=16 [6], 0, 1, 1, 1, 1, 1, 2, 3, 3, 4, 6, 7, 10, ... A005708 n>=25 [7], 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 7, 8, ... A005709 n>=36 [8], 0, 0, 1, 1, 1, 1, 2, 1, 2, 3, 3, 4, 5, 6, ... A005710 n>=49 'A000045' means that the Fibonacci numbers as referenced here start 1, 1, 2, 3, ... for n>=0.
Programs
-
Maple
A247489 := proc(k, n) seq((j-n)/k, j=0..k-1); seq((j-n)/(k-1), j=0..k-2); hypergeom([%%], [%], -k^k/(k-1)^(k-1)); round(evalf(%,100)) end: # Adjust precision if necessary! for k from 1 to 9 do print(seq(A247489(k, n), n=0..16)) od;
-
Sage
def A247489(k, n): P = [(j-n)/k for j in range(k)] Q = [(j-n)/(k-1) for j in range(k-1)] H = hypergeometric(P, Q, -k^k/(k-1)^(k-1)) return round(H.n(100)) # Adjust precision if necessary!
Comments