A247493 Triangle read by rows: T(n, k) = C(n, k)*C(2*k, k)/(k+1) - sum(j = 0..k, (-1)^j*(1-j)^n*C(k, j)/k!), 0<=k<=n.
0, 0, 0, 0, 1, 1, 0, 2, 6, 4, 0, 3, 11, 22, 13, 0, 4, 20, 45, 75, 41, 0, 5, 29, 110, 190, 261, 131, 0, 6, 42, 154, 560, 826, 938, 428, 0, 7, 55, 322, 749, 2646, 3570, 3452, 1429, 0, 8, 72, 335, 2499, 3885, 12012, 15198, 12897, 4861, 0, 9, 89, 770, 650, 16947, 21693, 53880, 63915, 48655, 16795, 0, 10, 110, 484, 11660, -8338, 97482
Offset: 0
Examples
0; 0, 0; 0, 1, 1; 0, 2, 6, 4; 0, 3, 11, 22, 13; 0, 4, 20, 45, 75, 41; 0, 5, 29, 110, 190, 261, 131; 0, 6, 42, 154, 560, 826, 938, 428;
Links
- Indranil Ghosh, Rows 0..100, flattened
Programs
-
Maple
T := proc(n, k) binomial(n,k)*binomial(2*k,k)/(k+1) - add((-1)^j*(1-j)^n /(j!*(k-j)!), j = 0..k) end: for n from 0 to 12 do seq(T(n,k), k=0..n) od;
-
Mathematica
Flatten[Table[(Binomial[n,k] * Binomial[2k,k] / (k+1)) - Sum[(-1)^j*(1-j)^n*Binomial[k,j]/k!,{j,0,k}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 04 2017 *)
-
PARI
tabl(nn) = {for (n=0, nn, for (k=0, n, print1((binomial(n,k)*binomial(2*k,k)/(k+1))-sum(j=0, k, (-1)^j*(1-j)^n*binomial(k,j)/k!),", ",);); print(););}; tabl(10); \\ Indranil Ghosh, Mar 04 2017
Comments