A247498 Generalized Euler numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k] exp(n*x)*sech(x), n>=0, k>=0.
1, 0, 1, -1, 1, 1, 0, 0, 2, 1, 5, -2, 3, 3, 1, 0, 0, 2, 8, 4, 1, -61, 16, -3, 18, 15, 5, 1, 0, 0, 2, 32, 52, 24, 6, 1, 1385, -272, 63, 48, 165, 110, 35, 7, 1, 0, 0, 2, 128, 484, 480, 198, 48, 8, 1, -50521, 7936, -1383, 528, 1395, 2000, 1085, 322, 63, 9, 1
Offset: 0
Examples
Square array starts: [n\k][0][1] [2] [3] [4] [5] [6] [7] [8] [0] 1, 0, -1, 0, 5, 0, -61, 0, 1385, ... A122045 [1] 1, 1, 0, -2, 0, 16, 0, -272, 0, ... A155585 [2] 1, 2, 3, 2, -3, 2, 63, 2, -1383, ... A119880 [3] 1, 3, 8, 18, 32, 48, 128, 528, 512, ... A119881 [4] 1, 4, 15, 52, 165, 484, 1395, 4372, 14505, ... [5] 1, 5, 24, 110, 480, 2000, 8064, 32240, 130560, ... A225116 [6] 1, 6, 35, 198, 1085, 5766, 29855, 151878, 766745, ... A000012, A001477, A067998, A121670, ... Triangular array starts: 1, 0, 1, -1, 1, 1, 0, 0, 2, 1, 5, -2, 3, 3, 1, 0, 0, 2, 8, 4, 1, -61, 16, -3, 18, 15, 5, 1.
Links
- J. East and R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
Crossrefs
Programs
-
Maple
# EGF (row) egf := n -> exp(n*x)*sech(x): seq(print(seq(k!*coeff(series(egf(n),x,k+2),x,k),k=0..8)), n=0..6); # Swiss-Knife polynomial (column) SKP := proc(n, x) local v, k, A; A := k -> `if`(k mod 4 = 0,0,(-1)^iquo(k,4)); add(2^iquo(-k,2)*A(k+1)*add((-1)^v* binomial(k,v)*(v+x+1)^n,v=0..k), k=0..n); expand(%) end: seq(print(seq(SKP(k, n), n=0..9)), k=0..6); # OGF (column) col := proc(n, len) local T; T := A247501_row(n); (-1)^(n+1)*add(T[k+1]/(x-1)^(k+1),k=0..n); seq(coeff(series(%,x,len+1),x,j),j=0..len) end: seq(print(col(n,8)), n=0..6);
-
Mathematica
nmax = 10; Clear[row]; row[n_] := row[n] = CoefficientList[Exp[n*x]*Sech[x] + O[x]^(nmax+2), x][[1 ;; nmax+1]]*Range[0, nmax]!; rows = Table[row[n], {n, 0, nmax}]; T[n_, k_] := rows[[n+1, k+1]]; Table[T[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 03 2017 *)
Formula
G.f. for column k: the k-th column consists of the values of the k-th Swiss-Knife polynomial skp_{k}(x) evaluated at x = 0,1,2,...
O.g.f. for column k: Sum_{j=0..k} (-1)^(k+1)*A247501(k,j)/(x-1)^(j+1).
Comments