cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247506 Generalized Fibonacci numbers: square array A(n,k) read by ascending antidiagonals, A(n,k) = [x^k]((1-Sum_{j=1..n} x^j)^(-1)), (n>=0, k>=0).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 5, 1, 0, 1, 1, 2, 4, 7, 8, 1, 0, 1, 1, 2, 4, 8, 13, 13, 1, 0, 1, 1, 2, 4, 8, 15, 24, 21, 1, 0, 1, 1, 2, 4, 8, 16, 29, 44, 34, 1, 0, 1, 1, 2, 4, 8, 16, 31, 56, 81, 55, 1, 0
Offset: 0

Views

Author

Peter Luschny, Nov 02 2014

Keywords

Examples

			[n\k] [0][1][2][3][4] [5] [6] [7]  [8]  [9] [10]  [11]  [12]
   [0] 1, 0, 0, 0, 0,  0,  0,  0,   0,   0,   0,    0,    0
   [1] 1, 1, 1, 1, 1,  1,  1,  1,   1,   1,   1,    1,    1
   [2] 1, 1, 2, 3, 5,  8, 13, 21,  34,  55,  89,  144,  233  [A000045]
   [3] 1, 1, 2, 4, 7, 13, 24, 44,  81, 149, 274,  504,  927  [A000073]
   [4] 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401,  773, 1490  [A000078]
   [5] 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464,  912, 1793  [A001591]
   [6] 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492,  976, 1936  [A001592]
   [7] 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000  [A066178]
   [8] 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028  [A079262]
   [.] .  .  .  .  .   .   .   .    .    .    .     .     .
  [oo] 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048  [A011782]
.
As a triangular array, starts:
  1,
  1, 0,
  1, 1, 0,
  1, 1, 1, 0,
  1, 1, 2, 1, 0,
  1, 1, 2, 3, 1, 0,
  1, 1, 2, 4, 5, 1, 0,
  1, 1, 2, 4, 7, 8, 1, 0,
  1, 1, 2, 4, 8, 13, 13, 1, 0,
  1, 1, 2, 4, 8, 15, 24, 21, 1, 0,
  ...
		

Crossrefs

Programs

  • Maple
    A := (n,k) -> coeff(series((1-add(x^j, j=1..n))^(-1),x,k+2),x,k):
    seq(print(seq(A(n,k), k=0..12)), n=0..9);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k<0, 0, If[k==0, 1, Sum[A[n, j], {j, k-n, k-1}]]]; Table[A[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 08 2019 *)

Formula

A(n, k) = Sum_{j=0..floor(k/(n+1))} (-1)^j*((k - j*n) + j + delta(k,0))/(2*(k - j*n) + delta(k,0))*binomial(k - j*n, j)*2^(k-j*(n+1)), where delta denotes the Kronecker delta (see Corollary 3.2 in Parks and Wills). - Stefano Spezia, Aug 06 2022