A247512 The curvature (rounded down) of touching circles inscribed in a special way in the smaller segment of circle of radius 10/9 divided by a chord of length 4/3.
9, 10, 13, 20, 35, 64, 119, 224, 428, 821, 1576, 3030, 5828, 11215, 21584, 41545, 79968, 153931, 296306, 570371, 1097933, 2113463, 4068308, 7831289, 15074840, 29018319, 55858826, 107525476, 206981225, 398428629, 766955420, 1476351286, 2841903278, 5470523390
Offset: 0
Examples
The first curvatures r(n) are 9, 10, 121/9, 1690/81, 25921/729, 420250/6561, 7027801/59049, 119508490/531441,... - _Wolfdieter Lang_, Sep 30 2014
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms
- Wolfdieter Lang, Curvature computation for A247335 and A247512.
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Mathematica
r[0] := 9; r[n_] := r[n] = (11*r[n - 1] - 9 + 20*Sqrt[(r[n - 1] - 9)*r[n - 1]/10])/9; Table[Floor[r[n]], {n, 0, 30}] (* G. C. Greubel, Dec 20 2017 *)
-
PARI
{ r=0.1;print1(floor(9/(10*r)),", ");r1=r; for (n=1,50, if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2)); ac=sqrt(ab^2-r^2); if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r); b=acos(r/ab)-z; r=r*(1-cos(b))/(1+cos(b)); print1(floor(9/(10*r)),", ") ) }
Formula
From Wolfdieter Lang, Sep 30 2014 (Start)
a(n) = floor(r(n)) with the rational curvatures r(n) satisfying the one step nonlinear recurrence relation r(n) = (11*r(n-1) - 9 + 20*sqrt((r(n-1) - 9)*r(n-1)/10))/9 with input r(0) = 9. (In the link r(n) is called b'(n).)
Extensions
Edited: Keyword easy and Chebyshev index link added. Wolfdieter Lang, Sep 30 2014
Comments