cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247513 Number of elements in the set {(x,y,z): 1<=x,y,z<=n, gcd(x,y,z)=1, lcm(x,y,z)=n}.

Original entry on oeis.org

1, 6, 6, 12, 6, 36, 6, 18, 12, 36, 6, 72, 6, 36, 36, 24, 6, 72, 6, 72, 36, 36, 6, 108, 12, 36, 18, 72, 6, 216, 6, 30, 36, 36, 36, 144, 6, 36, 36, 108, 6, 216, 6, 72, 72, 36, 6, 144, 12, 72, 36, 72, 6, 108, 36, 108, 36, 36, 6, 432
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 18 2014

Keywords

Comments

For given n and k positive integers, let L(n,k) represent the number of ordered k-tuples of positive integers whose GCD is 1 and LCM is n. In this notation, the sequence corresponds to a(n) = L(n,3).
The inverse Mobius transform is apparently in A070919. - R. J. Mathar, May 25 2017

Examples

			The triples corresponding to a(2)=6 are (1,1,2), (1,2,1), (2,1,1), (1,2,2), (2,1,2) and (2,2,1).
		

Crossrefs

L(n,2) produces A034444.

Programs

  • Maple
    a:= proc(n) local F; F:= ifactors(n)[2];
          mul(6*f[2],f=F)
    end proc:
    seq(a(n),n=1..40); # Robert Israel, Sep 22 2014
  • Mathematica
    a[n_] := 6^PrimeNu[n] Times @@ FactorInteger[n][[All, 2]];
    Array[a, 60] (* Jean-François Alcover, Jul 27 2020 *)
    a[1] = 1; a[n_] := Times @@ (6 * Last[#]& /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    a(n) = {f = factor(n); 6^omega(n)*prod(k=1, #f~, f[k, 2]); }

Formula

For n = p_1^{n_1} p_2^{n_2}...p_r^{n_r} one has
a(n) = Product_{i=1..r} ((n_i+1)^3 - 2*n_i^3 + (n_i-1)^3).
a(n) = 6^omega(n)*Product_{i=1..r} n_i.
a(n) = 6^A001221(n) *A005361(n). - R. J. Mathar, May 25 2017
Multiplicative with a(p^e) = 6*e. - Amiram Eldar, Sep 26 2020