A247513 Number of elements in the set {(x,y,z): 1<=x,y,z<=n, gcd(x,y,z)=1, lcm(x,y,z)=n}.
1, 6, 6, 12, 6, 36, 6, 18, 12, 36, 6, 72, 6, 36, 36, 24, 6, 72, 6, 72, 36, 36, 6, 108, 12, 36, 18, 72, 6, 216, 6, 30, 36, 36, 36, 144, 6, 36, 36, 108, 6, 216, 6, 72, 72, 36, 6, 144, 12, 72, 36, 72, 6, 108, 36, 108, 36, 36, 6, 432
Offset: 1
Examples
The triples corresponding to a(2)=6 are (1,1,2), (1,2,1), (2,1,1), (1,2,2), (2,1,2) and (2,2,1).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- O. Bagdasar, On Some Functions Involving the lcm and gcd of Integer Tuples, Scientific publications of the state university of Novi Pazar, Ser. A: Appl. Maths. Inform. and Mech., Vol. 6, No. 2 (2014), pp. 91-100.
Crossrefs
L(n,2) produces A034444.
Programs
-
Maple
a:= proc(n) local F; F:= ifactors(n)[2]; mul(6*f[2],f=F) end proc: seq(a(n),n=1..40); # Robert Israel, Sep 22 2014
-
Mathematica
a[n_] := 6^PrimeNu[n] Times @@ FactorInteger[n][[All, 2]]; Array[a, 60] (* Jean-François Alcover, Jul 27 2020 *) a[1] = 1; a[n_] := Times @@ (6 * Last[#]& /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
-
PARI
a(n) = {f = factor(n); 6^omega(n)*prod(k=1, #f~, f[k, 2]); }
Formula
For n = p_1^{n_1} p_2^{n_2}...p_r^{n_r} one has
a(n) = Product_{i=1..r} ((n_i+1)^3 - 2*n_i^3 + (n_i-1)^3).
a(n) = 6^omega(n)*Product_{i=1..r} n_i.
Multiplicative with a(p^e) = 6*e. - Amiram Eldar, Sep 26 2020
Comments