A247548 Decimal expansion of D^2, a constant associated with the "Dimer Problem" on a triangular lattice.
2, 3, 5, 6, 5, 2, 7, 3, 5, 3, 3, 4, 6, 2, 4, 8, 8, 0, 9, 2, 2, 9, 1, 4, 3, 1, 4, 7, 6, 3, 9, 9, 9, 4, 7, 6, 7, 9, 6, 4, 3, 9, 1, 5, 0, 0, 6, 7, 8, 4, 1, 6, 7, 9, 8, 3, 8, 6, 6, 1, 8, 7, 6, 0, 6, 3, 4, 1, 9, 1, 2, 6, 2, 3, 1, 0, 0, 2, 5, 4, 1, 5, 5, 6, 5, 3, 6, 9, 1, 7, 7, 1, 3, 6, 7, 0, 9, 1, 5, 9, 6, 3, 9, 5
Offset: 1
Examples
2.35652735334624880922914314763999476796439150067841679838661876063419126231...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.23 Monomer-dimer constants p. 408.
Programs
-
Mathematica
digits = 20; uv = Log[6 + 2*Cos[u] + 2*Cos[v] + 2*Cos[u + v]]; SetOptions[NIntegrate, WorkingPrecision -> digits + 5]; i1 = 2*NIntegrate[uv, {u, 0, Pi/2}, {v, 0, Pi/2}]; i2 = 4*NIntegrate[uv, {u, 0, Pi/2}, {v, Pi/2, Pi}]; i3 = 2*NIntegrate[uv, {u, -Pi, -Pi/2}, {v, Pi/2, Pi}]; i4 = 2*NIntegrate[uv, {u, -Pi/2, 0}, {v, 0, Pi/2}]; i5 = 4*NIntegrate[uv, {u, -Pi/2, 0}, {v, Pi/2, Pi}]; i6 = 2*NIntegrate[uv, {u, Pi/2, Pi}, {v, Pi/2, Pi}]; D2 = Exp[(1/(8*Pi^2))*(i1 + i2 + i3 + i4 + i5 + i6)]; RealDigits[D2, 10, digits] // First
-
PARI
exp(1/(8*Pi^2) * intnum(u=-Pi, Pi, intnum(v=-Pi,Pi, log(6 + 2*cos(u) + 2*cos(v) + 2*cos(u+v))))) \\ Michel Marcus, Sep 19 2014
Formula
Equals exp( 1/(8*Pi^2) * Integral_{v=-Pi..Pi} Integral_{u=-Pi..Pi} log(6 + 2*cos(u) + 2*cos(v) + 2*cos(u+v)) du dv).
Extensions
More terms from Michel Marcus, Sep 19 2014