cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247548 Decimal expansion of D^2, a constant associated with the "Dimer Problem" on a triangular lattice.

Original entry on oeis.org

2, 3, 5, 6, 5, 2, 7, 3, 5, 3, 3, 4, 6, 2, 4, 8, 8, 0, 9, 2, 2, 9, 1, 4, 3, 1, 4, 7, 6, 3, 9, 9, 9, 4, 7, 6, 7, 9, 6, 4, 3, 9, 1, 5, 0, 0, 6, 7, 8, 4, 1, 6, 7, 9, 8, 3, 8, 6, 6, 1, 8, 7, 6, 0, 6, 3, 4, 1, 9, 1, 2, 6, 2, 3, 1, 0, 0, 2, 5, 4, 1, 5, 5, 6, 5, 3, 6, 9, 1, 7, 7, 1, 3, 6, 7, 0, 9, 1, 5, 9, 6, 3, 9, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 19 2014

Keywords

Examples

			2.35652735334624880922914314763999476796439150067841679838661876063419126231...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.23 Monomer-dimer constants p. 408.

Crossrefs

Programs

  • Mathematica
    digits = 20; uv = Log[6 + 2*Cos[u] + 2*Cos[v] + 2*Cos[u + v]];
    SetOptions[NIntegrate, WorkingPrecision -> digits + 5];
    i1 = 2*NIntegrate[uv, {u, 0, Pi/2}, {v, 0, Pi/2}];
    i2 = 4*NIntegrate[uv, {u, 0, Pi/2}, {v, Pi/2, Pi}];
    i3 = 2*NIntegrate[uv, {u, -Pi, -Pi/2}, {v, Pi/2, Pi}];
    i4 = 2*NIntegrate[uv, {u, -Pi/2, 0}, {v, 0, Pi/2}];
    i5 = 4*NIntegrate[uv, {u, -Pi/2, 0}, {v, Pi/2, Pi}];
    i6 = 2*NIntegrate[uv, {u, Pi/2, Pi}, {v, Pi/2, Pi}];
    D2 = Exp[(1/(8*Pi^2))*(i1 + i2 + i3 + i4 + i5 + i6)];
    RealDigits[D2, 10, digits] // First
  • PARI
    exp(1/(8*Pi^2) * intnum(u=-Pi, Pi, intnum(v=-Pi,Pi, log(6 + 2*cos(u) + 2*cos(v) + 2*cos(u+v))))) \\ Michel Marcus, Sep 19 2014

Formula

Equals exp( 1/(8*Pi^2) * Integral_{v=-Pi..Pi} Integral_{u=-Pi..Pi} log(6 + 2*cos(u) + 2*cos(v) + 2*cos(u+v)) du dv).

Extensions

More terms from Michel Marcus, Sep 19 2014