A247558 Smallest integer x > 0 such that the number of semiprimes in the interval (x/2, x] equals n.
4, 6, 10, 15, 25, 26, 35, 38, 39, 57, 58, 62, 65, 86, 87, 91, 94, 95, 121, 122, 123, 134, 142, 143, 145, 146, 159, 161, 169, 202, 203, 205, 206, 209, 214, 215, 217, 218, 219, 221, 262, 265, 278, 299, 301, 302, 303, 305, 309, 326, 327, 329, 335, 341, 346, 361, 362, 365, 382, 386, 393, 394, 395, 398
Offset: 1
Keywords
Examples
a(6) = 26 because in the interval, (13, 26], {14, 15, 21, 22, 25, 26} are six semiprimes.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
SemiPrimeQ[n_] := PrimeOmega[n] == 2; mx = 1000; t = Table[0, {mx + 1}]; s = 0; Do[ If[ SemiPrimeQ[k], s++]; If[ SemiPrimeQ[k/2], s--]; If[s <= mx && t[[s + 1]] == 0, t[[s + 1]] = k], {k, 8*mx}]; Rest[t]
Comments