A247585 Period of the decimal expansion of 1/p as p runs through the prime numbers of the form n^2+1 (0 by convention for the primes 2 and 5).
0, 0, 16, 3, 4, 98, 256, 200, 576, 338, 1296, 200, 1458, 3136, 242, 1369, 7056, 1620, 4418, 12100, 13456, 3600, 15376, 567, 3380, 8978, 10658, 7500, 24336, 25, 5780, 30976, 600, 33856, 41616, 10609, 44100, 50176, 52900, 55696, 14400, 62500, 65536, 33800, 69696, 8100
Offset: 1
Keywords
Examples
a(3) = 16 because A002496(3) = 17 and 1/17 = 0. 0588235294117647 0588235294117647 ... has period 16.
Programs
-
Mathematica
lst={};Do[If[PrimeQ[n^2+1],AppendTo[lst,n^2+1]],{n,1,1000}];Table[Length[RealDigits[1/lst[[m]]][[1,1]]],{m,1,60}]
Comments