A247589 Number of integer-sided obtuse triangles with largest side n.
0, 0, 1, 1, 2, 4, 5, 7, 10, 12, 15, 17, 21, 25, 29, 33, 37, 42, 48, 53, 58, 65, 71, 76, 83, 91, 100, 106, 113, 122, 130, 140, 149, 158, 169, 177, 188, 197, 210, 221, 230, 243, 255, 269, 281, 292, 306, 318, 333, 346
Offset: 1
Keywords
Examples
a(5) = 2 because there are 2 integer-sided acute triangles with largest side 5: (2,4,5); (3,3,5).
Links
- Vladimir Letsko, Mathematical Marathon, problem 192 (in Russian).
Programs
-
Maple
tr_o:=proc(n) local a,b,t,d;t:=0: for a to n do for b from max(a,n+1-a) to n do d:=a^2+b^2-n^2: if d<0 then t:=t+1 fi od od; t; end;
Formula
a(n) = k*(k + (1+(-1)^n)/2) + Sum_{j=1..floor(n*(1-sqrt(2)/2))} floor(sqrt(2*j*n - j^2 - 1) - j), where k = floor((2*n*(sqrt(2) - 1) + 1 - (-1)^n)/4) (it appears that k(n) is A070098(n)). - Anton Nikonov, Sep 29 2014