A247592 Numbers n such that A002496(n) mod A002496(n-1) is a perfect square.
2, 8, 10, 25, 42, 147, 160, 169, 238, 260, 491, 544, 869, 890, 923, 1140, 1337, 1386, 1465, 1643, 1927, 3371, 4614, 5038, 5086, 5225, 5832, 5909, 5995, 7118, 7157, 8540, 9859, 12543, 13505, 13795, 13841, 14211, 15347, 17079, 17263, 18643, 20211, 21184, 21245
Offset: 1
Keywords
Examples
a(3)=10 because A002496(10) mod A002496(9)= 677 mod 577 = 10^2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..200
Programs
-
Maple
with(numtheory):nn:=360000:T:=array(1..nn):kk:=0: for n from 1 to nn do: if type(n^2+1,prime)=true then kk:=kk+1:T[kk]:=n^2+1: else fi: od: for m from 1 to kk-1 do: r:=irem(T[m+1],T[m]):z:=sqrt(r): if z=floor(z) then printf(`%d, `, m+1): else fi: od:
-
Mathematica
lst={};lst1={};nn=400000;Do[If[PrimeQ[n^2+1],AppendTo[lst,n^2+1]],{n,1,nn}];nn1:=Length[lst]; Do[If[IntegerQ[Sqrt[Mod[lst[[m]],lst[[m-1]]]]],AppendTo[lst1,m]],{m,2,nn1}];lst1
-
Python
from gmpy2 import t_mod, is_square, is_prime A247592_list, A002496_list, m, c = [], [2], 2, 2 for n in range(1, 10**7): m += 2*n+1 if is_prime(m): if is_square(t_mod(m, A002496_list[-1])): A247592_list.append(c) A002496_list.append(m) c += 1 # Chai Wah Wu, Sep 20 2014
Comments