A247600 Least positive integer m with pi(m*n) = m + n, where pi(x) denotes the number of primes not exceeding x.
9, 7, 6, 998, 5, 5, 5, 5, 5, 5, 636787, 1617099, 4124188, 10553076, 5, 5, 179992154, 465769460, 1208198239, 3140421185, 5, 5, 5, 145935688930, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 5
Examples
a(5) = 9 since pi(5*9) = 14 = 5 + 9, and pi(5*m) = 5 + m for no m < 9.
Links
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685 [math.NT], 2014-2017.
Programs
-
Mathematica
Do[m=1;Label[aa];If[PrimePi[n*m]==m+n,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,5,21}] Table[m = 1; While[PrimePi[m*n] != m + n, m++]; m, {n, 5, 14}] (* Robert Price, Mar 20 2019 *)
Extensions
a(22)-a(37) from Chai Wah Wu, May 03 2018
Comments