cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A281197 Least number m such that A247600(m) = n.

Original entry on oeis.org

9, 7, 6, 998, 5, 6331, 15866, 39860, 100135, 251616, 636787, 1617099, 4124188, 10553076, 27066256, 69709243, 179992154, 465769460, 1208198239, 3140421185, 8179001679, 21338684878, 55762147707, 145935688930, 382465571795, 1003652346718
Offset: 5

Views

Author

Seiichi Manyama, Jan 17 2017

Keywords

Examples

			pi(5*9) = 9 + 5.
pi(6*7) = 7 + 6.
pi(7*6) = 6 + 7.
pi(8*998) = 998 + 8.
pi(9*5) = 5 + 9.
...
pi(15*636787) = 636787 + 15.
pi(16*1617099) = 1617099 + 16.
		

Crossrefs

Formula

pi(n*a(n)) = a(n) + n.

Extensions

a(19)-a(28) from Chai Wah Wu, May 03 2018
a(29)-a(30) from Chai Wah Wu, May 08 2018

A281196 Number of n such that A247600(n) = 5.

Original entry on oeis.org

9, 10, 11, 12, 13, 14, 19, 20, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 41
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2017

Keywords

Comments

Conjecture: This sequence has just 22 terms shown.
Sequence is finite and complete. Since pi(x) < 1.25506*x/log(x), it follows that for x > 106, pi(5*x) < x + 5. - Chai Wah Wu, May 01 2018, May 14 2020.

Examples

			9 is a term since pi(5*9) = 14 = 9 + 5, and pi(m*9) = 9 + m for no m < 5.
		

Crossrefs

Formula

pi(5*a(n)) = a(n) + 5.

A247824 Least positive integer m such that m + n divides prime(m) + prime(n).

Original entry on oeis.org

1, 5, 5, 5, 2, 2, 38, 16, 40, 12, 13, 1, 11, 1, 11, 4, 35, 38, 35, 35, 38, 35, 35, 36, 31, 31, 33, 33, 36, 36, 25, 25, 2, 25, 4, 3, 4, 6, 6, 8, 222, 8, 95, 223, 99, 98, 95, 88, 222, 94, 93, 94, 95, 92, 226, 88, 83, 92, 225, 92
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 24 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0. Moreover, a(n) < n*(n-1) for all n > 2. - Zhi-Wei Sun, Sep 25 2014
A247869(n) = (prime(a(n)) + prime(n)) / (a(n) + n). - Reinhard Zumkeller, Sep 27 2014
I have verified the conjecture for n up to 10^5, and noted that max{a(n): n=1..10^5} = a(79276) = 3141281384 > 3*10^9. - Zhi-Wei Sun, Oct 08 2014
I would like to offer 500 US dollars as the prize for the first proof of the above conjecture. - Zhi-Wei Sun, Feb 24 2018
Chang Zhang (a student of Nanjing Univ.) has verified the conjecture for n up to 4*10^5. For example, a(337647) = 21342496785. - Zhi-Wei Sun, Jun 22 2020

Examples

			a(2) = 5 since 5 + 2 = 7 divides prime(5) + prime(2) = 11 + 3 = 14.
a(10409) = 69804276 since 69804276 + 10409 = 69814685 divides prime(10409) + prime(69804276) = 109481 + 1396184219 = 1396293700 = 20*69814685.
a(35980) = 180302246 since 35980 + 180302246 = 180338226 divides prime(35980) + prime(180302246) = 427727 + 3786675019 = 3787102746 = 21*180338226.
a(79276) = 3141281384 since 79276 + 3141281384 = 3141360660 divides prime(79276) + prime(3141281384) = 1010431 + 75391645409 = 75392655840 = 24*3141360660.
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a247824 n = genericIndex a247824_list (n - 1)
    a247824_list = f ips where
       f ((x, p) : xps) = head
         [y | (y, q) <- ips, (p + q) `mod` (x + y) == 0] : f xps
       ips = zip [1..] a000040_list
    -- Reinhard Zumkeller, Sep 27 2014
  • Mathematica
    Do[m=1;Label[aa];If[Mod[Prime[m]+Prime[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
    lpi[n_]:=Module[{k=1,p=Prime[n]},While[!Divisible[p+Prime[k],k+n], k++]; k]; Array[lpi,60] (* Harvey P. Dale, Apr 23 2015 *)
  • PARI
    a(n) = {m = 1; while ((prime(m) + prime(n)) % (m + n), m++); m;} \\ Michel Marcus, Sep 25 2014
    
  • PARI
    a(n)=my(p=prime(n),m); forprime(q=2,, if((p+q)%(n+m++)==0, return(m))) \\ Charles R Greathouse IV, Sep 25 2014
    

A247603 Least integer m > 0 with pi(m*n) = sigma(m), where sigma(m) is the sum of all positive divisors of m.

Original entry on oeis.org

1, 2, 23, 61, 8, 22, 16, 12, 202, 386, 30, 36, 174, 10745, 1684, 2804, 1616, 40006, 6764, 996, 5775, 8131355, 19974, 11264, 4446, 27882, 4848, 32466, 162712, 532313373, 2341816, 30864, 14544, 63696, 2880, 390990, 135200, 133992, 1331840, 11621646, 117990
Offset: 2

Views

Author

Zhi-Wei Sun, Sep 21 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 1.

Examples

			a(3) = 2 since pi(3*2) = 3 = sigma(2), and pi(3*1) = 2 > sigma(1) = 1.
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[PrimePi[n*m]==DivisorSigma[1,m],Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];
    Label[bb];Continue,{n,2,30}]

Extensions

a(31)-a(42) from Hiroaki Yamanouchi, Oct 04 2014

A247604 Least integer m > 0 with pi(m*n) = sigma(m+n), where pi(.) and sigma(.) are given by A000720 and A000203.

Original entry on oeis.org

18, 11, 360, 251, 168, 36, 6, 285, 1185, 792, 29, 11, 245078, 5, 1869, 46074, 573, 42863, 11, 5, 8129, 60806, 1443, 452, 15, 39298437, 386891, 1041920, 1290489, 17630, 35569, 10, 8174777, 3152500, 4291325, 57880072, 55991485, 127358, 93462807, 93314912
Offset: 5

Views

Author

Zhi-Wei Sun, Sep 21 2014

Keywords

Comments

Conjecture: a(n) exists for every n = 5,6,...

Examples

			a(5) = 18 since pi(5*18) = 24 = sigma(5+18).
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[PrimePi[n*m]==DivisorSigma[1,m+n],Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];
    Label[bb];Continue,{n,5,40}]

Extensions

a(41)-a(44) from Hiroaki Yamanouchi, Oct 04 2014

A247601 Least positive integer m with pi(m*n) = phi(m), where pi(.) is the prime-counting function and phi(.) is Euler's totient function.

Original entry on oeis.org

2, 1, 13, 31, 73, 181, 443, 2249, 238839, 6473, 30001, 40123, 108539, 251707, 637321, 7554079, 4124437, 241895689, 27067097, 69709723, 179992919, 1019958623, 1208198863, 3140421743, 8179002173
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 21 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0.
This is motivated by Golomb's result that for any n > 1 there is a positive integer m with mn/pi(mn) = n (i.e., pi(mn) = m).

Examples

			a(3) = 13 since pi(3*13) = 12 = phi(13).
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[PrimePi[n*m]==EulerPhi[m],Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];
    Label[bb];Continue,{n,1,18}]
    Table[m = 1;
    While[PrimePi[n*m] != EulerPhi[m], m++]; m, {n,1,12}] (* Robert Price, Sep 08 2019 *)

Extensions

a(19)-a(25) from Hiroaki Yamanouchi, Oct 04 2014

A247602 Least positive integer m with pi(m*n) = phi(m+n), where pi(.) is the prime-counting function and phi(.) is Euler's totient function.

Original entry on oeis.org

3, 2, 1, 91, 6, 5, 1, 5, 1, 8041, 15870, 39865, 1, 251625, 637064, 1829661, 4124240, 10553093, 1, 69709253, 179992156, 465769749, 1210576800, 3140421235, 13974959892
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 21 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0.

Examples

			a(1) = 3 since pi(1*3) = 2 = phi(1+3).
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[PrimePi[n*m]==EulerPhi[m+n],Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];
    Label[bb];Continue,{n,1,20}]
    Table[m = 1;
    While[PrimePi[n*m] != EulerPhi[m + n], m++]; m, {n, 1, 13}] (* Robert Price, Sep 08 2019 *)
  • PARI
    a(n) = {my(m = 1); while (primepi(m*n) != eulerphi(m+n), m++); m;} \\ Michel Marcus, Sep 22 2014

Extensions

a(21)-a(25) from Hiroaki Yamanouchi, Oct 04 2014

A247673 Least integer m > 0 with pi(m*n) = sigma(m) + sigma(n), where pi(.) and sigma(.) are given by A000720 and A000203 respectively.

Original entry on oeis.org

23, 47, 359, 25, 11, 33, 9, 17, 182, 11, 15, 304, 12, 160, 6105, 444, 22676, 408, 5, 60, 8, 17888, 9, 125526, 1616818, 334976, 22584, 19548, 10, 286780, 21540, 6698792, 640720, 2466378, 75999272, 646104, 573678, 801525615, 1116040868, 3565308, 127408112
Offset: 5

Views

Author

Zhi-Wei Sun, Sep 22 2014

Keywords

Comments

Conjecture: a(n) exists for every n = 5, 6, ... .

Examples

			a(5) = 23 since pi(5*23) = 30 = sigma(5) + sigma(23).
		

Crossrefs

Programs

  • Mathematica
    Do[m=1; Label[aa]; If[PrimePi[m*n]==DivisorSigma[1,m]+DivisorSigma[1,n], Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 5, 41}]

Extensions

a(42)-a(45) from Hiroaki Yamanouchi, Oct 04 2014

A247672 Least integer m > 0 with pi(m*n) = phi(m) + phi(n), where pi(.) is the prime-counting function and phi(.) is Euler's totient function.

Original entry on oeis.org

6, 2, 2, 23, 3, 1, 3, 1033, 2, 6449, 15887, 1, 100169, 268393, 636917, 2113589, 70324093, 1, 27852457, 78848479, 2, 468329417, 4, 1, 10220118551
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 22 2014

Keywords

Comments

Conjecture: a(n) exists for every n > 0.

Examples

			a(1) = 6 since pi(6) = 3 = phi(1) + phi(6), and pi(1*m) = phi(1) + phi(m) for no m < 6.
		

Crossrefs

Programs

  • Mathematica
    Table[m = 1; While[PrimePi[n*m] != EulerPhi[m] + EulerPhi[n], m++]; m, {n, 1, 12}] (* Robert Price, Sep 08 2019 *)
  • Perl
    use ntheory ":all"; for my $n (1..16) { my $m=1; $m++ until (prime_count($m*$n) == euler_phi($m) + euler_phi($n)); say "$n $m"; } # Dana Jacobsen, Mar 07 2023

Extensions

a(19)-a(25) from Hiroaki Yamanouchi, Oct 04 2014

A247793 Least integer m > 0 such that pi(m*n) divides prime(m) + prime(n), where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

2, 1, 75, 10, 18, 1, 75, 41, 58, 2, 94, 107, 14, 13, 2, 14, 14, 1, 84, 527, 124, 715, 13, 4, 1, 4, 276, 310, 2, 4, 11216, 3074, 3470, 14, 2, 15, 5, 947, 538839, 2, 8, 2, 1592, 4, 8, 16813, 2293, 1, 2755, 3007, 3272, 32203, 5357440, 6, 17, 17, 374252, 9, 17, 6905
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 23 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 0.

Examples

			a(4) = 10 since pi(4*10) = 12 divides prime(4) + prime(10) = 7 + 29 = 36.
		

Crossrefs

Programs

  • Haskell
    a247793_list = 2 : f (zip [2..] $ tail a000040_list) where
       f ((x, p) : xps) = m : f xps where
         m = head [y | y <- [1..], (p + a000040 y) `mod` a000720 (x * y) == 0]
    -- Reinhard Zumkeller, Sep 24 2014
  • Mathematica
    Do[m=1;Label[aa];If[m*n>1&&Mod[Prime[m]+Prime[n],PrimePi[m*n]]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
Showing 1-10 of 11 results. Next